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ABSTRACT Associative storage and retrieval of binary random patterns
in various neural net models with one-step threshold-detection retrieval
and local learning rules are the subject of this paper. For different hetero-
association and auto-association memory tasks, specified by the properties
of the pattern sets to be stored and upper bounds on the retrieval errors, we
compare the performance of various models of finite as well as asymptoti-
cally infinite size. In infinite models, we consider the case of asymptotically
sparse patterns, where the mean activity in a pattern vanishes, and study
two asymptotic fidelity requirements: constant error probabilities and va-
nishing error probabilities.

A signal-to-noise ratio analysis is carried out for one retrieval step where the
calculations are comparatively straightforward and easy. As performance
measures we propose and evaluate information capacities in bits/synapse
which also take into account the important property of fault tolerance.
For auto-association we compare one-step and fixed-point retrieval that is
analyzed in the literature by methods of statistical mechanics.

1.1 Introduction and Overview

With growing experimental insight in the anatomy of the nervous system
as well as the first electrophysiological recordings of nerve cells in the first
half of this century, a new theoretical field was opened, namely, the mo-
delling of the experimental findings at one or a few nerve cells, leading
to very detailed models of biological neurons [1]. But different from most
biological phenomena, where the macroscopic function can be understood
by revealing the cellular mechanism, the function of the nervous system as
a whole turned out to be constituted by the collective behaviour of a very
large number of nerve cells and the activity of a large fraction of cells, a
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il 1. Associative Data Storage and Retrieval in Neural Networks

whole activity pattern, had to be considered instead.

The modelling had to drop the biological faithfullness at two points:
on the cellular level the models had to be simplified such that a large
number of nerve cells could be described and on the macroscopic level
the function had to be reduced to simple activity pattern processing like
pattern completion, pattern recognition or pattern classification allowing a
theoretical description and quantification.

McCulloch and Pitts [2] argued that due to the “all or none” character
of nervous activity the neurophysiological findings can be reproduced in
models with simple two-state neurons, in particular, in associative memory
models which exhibit binary activity patterns.

In the fiftees and sixtees small feed-forward neural nets have been sug-
gested for simple control tasks, among them the associative memory [3],
[4], or the simple perceptron [5]. All these models employ one-step retrieval
which means that in one parallel update step the initial or input pattern is
transformed to the output pattern. Such models which contain no feed-back
loops will be the main subject of this paper.

Little, who introduced the Ising-spin analogy of the neural states 3 [6],
opened the door to analyzing the feed-back retrieval process in neural nets
with methods of statistical mechanics. The analysis which was develloped
during the seventies [7] for lattices of coupled spins with randomly distri-
buted interactions to describe spin glasses could be applied successfully to
fized-point retrieval in an associative memory [8]%. In fixed-point retrieval,
the retrieval process is iterated until a stable state is reached. This method
has been described in several recent books, e. g. van Hemmen and Kuhn
[9], Amit [10] and Hertz, Krogh, and Palmer [11].

This paper takes as starting point a larger class of simple processing
tasks: the association between members of binary pattern sets. Depending
on properties of the randomly generated pattern sets we will characterize
different memory tasks (Sect. 1) and concentrate on the question how a
neural model has to be designed to yield optimal performance.

We consider feed-forward neural associative memory models with one-
step retrieval (Sect. 2). To keep our model as variable as possible, Ising-spin
symmetry of the neural states is not assumed and arbitrary local learning
rules are admitted to form the synaptic connections. One-step retrieval
can be analyzed by elementary probability theory and it i1s compatible

3The two states of a binary neuron are identified with up and down states
of a spin particle in the Ising model, the synaptic couplings correspond to the
spin-spin interactions.

*Pattern completion with fixed-point retrieval in a neural net can be treated
like relaxation in a solid, once the storage process has determined the dynamics.
The macroscopic observables of the system (corresponding to specific heat, con-
ductivity or magnetization in solids) are then the overlaps to stored patterns, or
equivalently the recall errors.
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with a larger class of memory tasks, not only pattern completion. On the
other hand, as we will discuss, in cases of pattern completion a feed-back
retrieval model is preferable. Section 3 contains the detailed signal-to-noise
ratio analysis where we have included most of the calculations because the
intention of this work is to provide not only results but also the methods.

Another important question concerns the judgement of the performance
of different memory models. Unfortunately, in the literature a lot of diffe-
rent measures are used. Instead of staying with the mean retrieval errors
obtained from the analysis, we apply elementary information theory to the
memory process, leading us to the definition of information capacities which
allow to compare models with different memory tasks (Sect. 4).

In Sect. 5 we evaluate these performance measures for the various models.
The last section resumes the previous sections and points out the relations
to the literature. It compares one-step and fixed-point retrieval, taking
advantage of the works based on methods of statistical mechanics. The
results of the different approaches, which seem to be quite incoherent at
first sight, turn out to be not only comparable but also consistent.

1.1.1 MEMORY AND REPRESENTATION

A memory process can often be considered as a mapping from one set of
events into another set of events; as a trivial example one may think of the
problem how to establish a phone line to a friend. To solve the problem one
has to map the friends name to his phone number. For the construction
of a memory device like a phonebook which helps you with this problem
one first has to map or to code the events “the friend’s name” and the “his
phonenumber” into symbols, in this case strings of letters and numbers,
which can be written and read by a user. This mapping will be called the
representation of the events. The memory device has to store these pairs
of strings in some way. It can solve the problem if the representation maps
the events into unique data strings. Thus a given set of patterns specify
the memory task which a memory device has to solve.

Without loss of generality we focus on binary patterns as data strings. A
binary pattern is a string containing only two types of elements, for instance
“B” and “W” (for black and white pixels). We will restrict ourselves to
such pattern sets where every member has approximately the same ratio p
beween the number of “B” and “W” digits. We call a pattern distributed,
if both fractions of pixels have more than one member. Throughout this
work we distinguish three different patterns types:

e A singular pattern has only one “B” digit out of m — 1 “W” digits,
if m 1s the number of digits in the pattern. A singular pattern is by
definition not distributed.

e A sparse patternis distributed but the ratio p between the number of
“B” and “W” digits satisfies p << 0.5. In the infinite model m — oo
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we will consider the sparse limit: p — 0 with mp — oo which leads
to nontrivial distributed patterns.

e In a nonsparse pattern the fraction p between the number of “B” and
“W” digits has to be away from zero. In the infinite model: p = const
as m — oo.

1.1.2 RETRIEVAL FROM THE MEMORY

The memory device has to store a set of patterns in such a way that a
desired pattern can be selectively recalled at the output port. In the me-
mory retrieval a desired output pattern is selected by applying a pattern
at the input port of the device. We will denote the set of output patterns
the content patterns S¢.

An input pattern which selects a content pattern will be called its address
pattern or simply its address. The set of address patterns will be denoted
with $4. Thus in the retrieval the memory device has to map from an
address pattern to its corresponding content pattern. This map is defined
by the set of pairs consisting of address and content pattern:

{(xl,yl), . (J:M,yM) b eS8t f e SC}.

1.1.3 FauLT TOLERANCE IN ADDRESSING

Between two patterns # and & the number of different bits h(x, %) defines
a natural distance relation called the Hamming distance. Via this distance
a whole set of input patterns may specify one desired content pattern un-
iquely: all patterns # with the property h(z,z) < h(z,z*) for all z* # =
and z, 2" € 4. We call a memory retrieval fault tolerant if it allows input
noise in the sense that many input patterns which have a unique closest
address are mapped on the content pattern belonging to this address.

For a set of singular address patterns normally no & € $# has a unique
closest address and therefore, fault tolerant retrieval is impossible. Thus
fault tolerant retrieval can only be expected, if the address patterns are
distributed.

1.1.4 VARIOUS MEMORY TASKS

We call helero-association the general memory task where the set of address
patterns S and the set of content patterns S¢ can be chosen arbitrarly.
Below the following special cases of hetero-association will be considered:

e If the address patterns are singular patterns, the memory task is
called the look-up-table task. Then the singular pixel of an address
pattern points into a table of content patterns like the usual access
in a look-up-table.
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e For singular content patterns we can identify each bit of the content
pattern with a class in the set of address patterns. This memory task
can be interpreted as pattern classification which separates the set
of address patterns in digjunct classes. This task (with one-bit con-
tent patterns) has been executed by the classical simple perceptron
models; see [B].

o Auto-association 1s the case of hetero-association where address and
content pattern are identical, therefore also denoted as content ad-
dressability. Only for fault-tolerant retrieval the auto-association task
makes sense; then the memory performs pattern completion from a
distorted version #* as input pattern to the errorfree content pattern

z¥; see also Forrest and Wallace in [9].

1.1.5 RETRIEVAL ERRORS

A memory which allows errors in the addressing will perhaps also recall
erroneously the wrong content pattern or put at least some errors in the
output.

In the retrieval of binary patterns there may occur two types of flip
errors in a digit of the output pattern g*: A “W” of the content pattern
y* may be turned to a “B” and a “B” in the content pattern y* may be
turned to an “W”. Of course, with increasing addressing noise these errors
will also increase. But again via the distance relation it is possible that a
memory output containing errors in some digits perhaps still specifies the
event coded by the original content pattern. A given memory task together
with the sets S4 and S will fix the maximal mean errors which can be
tolerated in the retrieval. These upper bounds, which have to be satisfied
by the error probabilities, will be called the fidelity requirement.

1.2 Neural Associative Memory Models

The typical ingredients of an artificial neural network model are a large
number of similiar processor units called neurons, which obtain signals
through adjustable connections from a large number of input fibres and/or
other neurons. In this model the adjustable connections, the synapses,
connect an input port to each neuron.

The two different types of calculation in the model, the processing of
the neural input signal in the retrieval on the one hand and the synaptic
adjustment according to the data in the storage phase on the other hand,
are separated in time in this model; we distinguish the storage process and
the retrieval process.

To perform the calculations the pixel types “B” and “W” in the input
patterns have to be translated into signals which can propagate through
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FIGURE 1.1. Schematic view of a neural associative memory. i: retrieval input
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fibres, o: retrieval output fibres (axons), m: modifiable synaptic connection be-
tween neuron and input fibre. The horizontal lines are wires which propagate the
input signals to the synapses. Each column represents one neuron. The larger
upper section where the synaptic connections access corresponds to the dendritic
tree and the lower section the cell body. The arrow pointing below from the cell
body corresponds to the axon.

the network. We assign two different values “1” and “a” to the pixel types
“B” and “W”; each pattern is identified with an n-vector = € {a, 1}" with
a € [—1,0], we will use synonymously the expressions pattern and {a, 1}
vector. Of course, we are free to exchange “W” and “B” in the assignment;
the flip transformation F applied to all components in the data will not
change the memory problem. Here F(z; = W) := B and F(z; = B) .= W.
Therefore we can always assign the value 1 to the smaller pixel fraction so
that
p=ti: e, =1} /(n—t{i:2; =1}) <0.5.

Such models have already been proposed and analyzed many years ago;
e.g., Uttley [12], Steinbuch [3], Rosenblatt [5], Longuett-Higgins et al [13],
Amari [14], Gardner-Medwin [15] and Kohonen [16].

1.2.1 RETRIEVAL PROCESS

In the retrieval phase an address pattern is applied to the input port of
the memory. The input signals are propagated via a synaptic connection
strenghs matrix M;; to all neurons. In one-step retrieval every neuron j
actualizes its state, the azonal activity y;, according to this input and the
vector g 1s the retrieval output pattern.

Fach neuron has to form the dendritic potential d;, the sum over all its
incoming activities

dj := ZM”% (1.1)

www.manaraa.com



Gunther Palm , Friedrich T. Sommer vil

and then to determine the new activity value in the neural update equation

vj = f(dj = ©). (1.2)

The output signal of a biological neuron are trains of short electric pul-
ses, the neural spikes. It is the spike rate and not the amplitude or the
duration of a spike which is growing with increasing dendritic potential.
This properties have been modelled in the so called spike coding models;
of [17, 18, 19, 20]. Here we focus on rate coding models where the neural
transferfunction f(x) describes only the spike rate. In almost all of these
models f(z) is a monotonously increasing function. © is the threshold value
which can be adjusted globally for all neurons in each retrieval step.

Models with linear transfer function, as for instance proposed in Kohonen
[16] or Anderson [21, 22], lead for large networks to quasi continous valued
output patterns.

Binary output patterns are obtained, if the neural transfer function is
a two-valued stepfunction: f(z) = 1 for z > 0,f(x) = a otherwise.
The neural state g; = 1 is called firing or active, §; = 0 silent or passive.
The retrieval error probabilities for on errors and off errors respectively are
expressed by conditioned probabilities

e1 1= Prob[g]]l»C =a| y]]»C =1] , eq:= Prob[g]]l»C =1 y]]»C =al. (1.3)

Such models have been treated from Willshaw et al. [4], Palm [23] and Nadal
and Toulouse [24]. In one-step retrieval the output pattern is evaluated from
the input pattern after one synchronious parallel calculation of all neurons.

Step-shaped neural transfer functions have also been used in the spin-
glass literature on auto-association, e.g. in [25, 8, 26, 27]. These works
consider an iterative retrieval procedure, where via a feed-back loop the
signal flow through the system is iterated until a stationary state, a fixed
point, is reached. Such fized point retrieval has been considered for two
different ways performing the iteration. In models with parallel update
the complete one-step retrieval process is iterated in the manner that the
output is fed back as new input; for instance in [6, 15, 28, 29, 30, 31]. In
models with sequential random update only one neuron, randomly selected,
is updated (1.2) in one iteration step, leading to the new input, which only
deviates in one component from the preceding one; see again [25, 8, 26, 27].

The improvement due to iterated retrieval for the pattern completion
task obtained in simulations can be observed in Fig. 1.9.

1.2.2 STORAGE PROCESS

In this process, which is also called the learning process, the synaptic ma-
trix, the storage medium, is formed from the set of patterns to be stored.

During the storage process each pair (z',y') of patterns to be learned is
applied at the in- and output port of the memory. This provides a pre- and
postsynaptic value for every synapse M;;.
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Learning Rules

For a given pair (2, y) of pre- and postsynaptic activity values the local syn-
aptic rule R(x,y) determines explicitely the amount of synaptic connecti-
vity change. For binary patterns there are only four different constellations
possible for pre- and postsynaptic activities, viz., (a,a), (1, a),(a, 1), and
(1,1). Thus a synaptic rule is determined by four numbers

RI (7“1,7“2,7“3,7“4). (14)

The following two famous local learning rules will be focused in the subse-
quent analysis:

e The Hebb rule or asymmetrical coincidence rule H := (0,0,0,1) in-
creases the synaptic matrix element for coinciding pre- and post-
synaptic firing only. In his ‘neurophysiological postulate’” Hebb [32]
proposed this type of synaptic modification between pairs of firing
nervous cells.

e The agreement rule, Hopfield rule or symmetrical coincidence rule
A:=(1,—-1,—1,1) increases the synaptic matrix element for agreeing
pre- and postsynaptic states and decreases the synaptic weight for
disagreeing states. This rule was used in the original Hopfield model

[25].
The above rules are both product rules: R(xz,y) = zy. For a = 0 we ob-
tain the Hebb rule and for ¢ = —1 the agreement rule and sometimes, for

instance in [33], both are considered as Hebbian learning. We retained the
distinction because in the original formulation of his postulate Hebb clearly
talks of the influence of synchronously firing neurons on their interconnec-
ting synapse. The psychologist Hebb claimed this postulate to be inspired
by physiological and psychological findings while the symmetry between
firing and silence in the agreement rule is biologically very implausible.

Storage Procedures

We consider one-step learning which means that after one single presen-
tation of every pair the formation of the synaptic matriz is finished. Two
different types of storage procedures will be examined:

e The incremental storing procedure, where the synaptic matrix is given

by

M= (M) = ZR(l‘f, v (1.5)

k=1

e The binary storage procedure, where the synaptic matrix M is obtai-
ned from M by another highly non-linear operation:

M;j = sgn(M;;) (1.6)
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with sgn(0) := 0.

Storage procedures can be strictly local (as in most of the papers cited
here) or non-local (as for example in Personnaz et al [34, 35]). Depending
on the sign of the average connectivity change, they can be productive, de-
structive or balancing for the total network connectivity (cf. [36, 37]). Local
storage procedures can make use of two (probably the majority) , three (su-
pervised learning with additional teacher signal, e.g. Barto et al [38]) or
more terms to compute a synaptic change (compare Palm [36] again). In
this paper we concentrate on storage procedures employing strictly local
two-term learning rules.

The most common synaptic arrangement in biological neural nets as in
the cerebral cortex (and the hippocampus) is the simple dyadic synapse.
It connects just two neurons, the presynaptic and the postsynaptic one.
Therefore there are just two natural, locally available activity signals: the
presynaptic and the postsynaptic activity.

1.2.3 DISTRIBUTED STORAGE

One reason of the big come back of systems with neural architecture in
the last decade 1s the fact that in computer science distributed proces-
sing turned out more and more to be an indispensible goal. How does the
simple memory models introduced in this section display the property of
distributed storage 7

For hetero-association local rules store second order correlations between
address and content pattern activity; for instance with the Hebb rule each
pair of active neurons (¥, yf) affects one synapse M;;.

The storage 1s called distributed, if the storage of one single pattern pair
causes nonlocal changes in the storage medium. More than one element of
the synaptic matrix is affected if at least one pattern in the pair is nonsin-
gular, if either the set of address or content patterns contain nonsingular
patterns.

Here we define distributed storage in a stricter sense: we require that
many matrix elements carry information about more than one pattern pair.
In this sense distributed information storage for arbitrary local rules is
provided only if both pattern sets, address and content patterns, contain
nonsingular and overlapping patterns. Then storage of several pattern pairs
will affect the same synapses, so that each entry in the synaptic connectivity
matrix M may contain the superposition of several memory traces, i.e., for
most index pairs (i, j) the sum Y, R(zf, yf) should have more than one
nonzero contribution. Like in holography an accessible content segment (a
pattern pair) is written widely spread in the storage medium and different
content segments will overlap.

In the case of auto-association local rules store the second-order auto-
correlation of the pattern activity; with the Hebb rule each pair of active
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neurons in a learning pattern causes a change in one synapse. Distributed
storage requires the patterns to be nonsingular and overlapping.

1.3 Analysis of the Retrieval Process

The aim of the present section is the analysis of one-step retrieval in the
associative memory after learning, i.e., after the storage process has formed
the memory matrix for a given memory task (§4,8%). In Sect. 1.1.5 and
by eq. (1.3) we have introduced the quantities of interest in the analysis of
this feed-forward system, viz., the mean retrieval error probabilities in an
output pattern for a given input pattern.

We already mentioned in the introduction that different spatial scales
can be distinguished in the treatment of neural nets, the microscopic scale
of synapses and model neurons and the macroscopic scale of the collective
behaviour of all neurons. What we presume about the model is on the
microscopic scale (neuron model, learning rules ete.), what we would like to
know from a theory is on the macroscopic scale, the collective behaviour of
the whole set of neurons (retrieval errors). In physics it is quite usual to deal
with separable scales, for instance in thermodynamics the nuclear versus
the macroscopic scale. Physical mean-field theories which originally have
been developed for spin-glasses® yield asymptotic results for the retrieval
errors® in the limit of infinite system size: m, n — oo which is often called
the thermodynamic limit of fixed-point retrieval in the associative memory
after learning.

We will consider memory tasks with different mean ratios p between
the elements 1 and a in the pattern sets in the finite model and in the
thermodynamic limit, i.e., m — oco. Curiously memory tasks with sparse
patterns, as defined in Sect. 1.1.1, will turn out to yield optimal asymptotic
performance.

Spin-glasses are magnetic solids with two different competing fractions of
spin couplings. One fraction favors parallel; the other fraction anti-parallel spin
alignment which cause irregular (glass-like) stable spin configurations. The mean-
field theory provides values for the mean magnetization as macroscopic order
parameter.

5The order parameters of a mean-field theory treating neural networks are the
M overlaps {m;,l =1,..., M} where each overlap m; is defined as the number of
common pixels between retrieval output and the content pattern y'. If we apply
a (distorted) address pattern i* as input pattern, particularly one overlap is
important for the retrieval quality, namely the overlap mj corresponding to the
input pattern. The theory provides a mean value < mj >, averaged over a large
number of retrieval events which is equivalent to the retrieval error probabilities
of Sect. 1.5.
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1.3.1 RANDOM PATTERN GENERATION

To apply probability theory for the estimation of mean retrieval error pro-
babilities we have to assume the following properties of the the memory
data and of the distortion of the input patterns.

Content and Address Patterns

In the memory tasks we assume the simplest model of the data to be stored,
namely sets of randomly generated patterns. The value of each of the n
digits in a pattern z¥ € S is chosen independently with the probability:
p := Prob[z¥ = 1]. A set of randomly generated patterns is fixed by three
parameters, the probability p, the dimensionality of a pattern n and the
number of patterns M. We will use the following notation for address and
content patterns

S = S(p,m, M),8 := S(q,n, M). For hetero-association the sets &4
and 8¢ will be generated mutually independently.

Input Patterns

The signal detection problem will be treated in three different cases of
addressing:

a) A perfect address pattern as input pattern =¥ with ny := #{i : ¥ = 1}
being the number of 1 components.

b) An ensemble of perfect input patterns, where now the number of ones
in the input pattern n; becomes a random variable too. It is a bino-
mially distributed variable and for large m the fraction ny/m will be
close to its expectation value p because of the strong law of large num-
bers [39]. In the analysis the average input activily p of the ensemble
will become an important quantity which, for large m, equals

= [+ (m—ni)al/m=p+ (1 -p)a. (L.7)

¢) An ensemble of noisy input patterns SA, which is generated by a
second random generation process from the set of address patterns
S4 used for learning. Here we concentrate on noisy input patterns,
where 2% € 84 is a “part” of an address pattern z* in the following
sense: Prob [2f = 0| 2f =0] = 1 and Prob [z} =1|2f =1] =: p'.
As for the faultless ensemble we describe the input activity for large
m by the average input activity of the address ensemble

= pp' + (1 —ppa (1.8)

In the analysis below we will use the prime to indicate the results for
the noisy input ensemble.
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1.3.2 SITE AVERAGING AND THRESHOLD SETTING

Depending on its dendritic potential (1.1) and the threshold value ©; each
neuron j “decides” in the update process (1.2) whether it should be active
or silent. This can be regarded as a signal detection problem on the random
variable d; which every neuron has to solve.

To find the probabilities for on and off errors in eq. (1.3) we have to con-
sider the neurons seperated in two fractions; the on-neurons which should
be active in the original content pattern y* and the off-neurons which
should not be active. In our model the threshold of each neuron is set to
the same value depending only on the total activity of the input pattern.
Therefore, it i1s sufficient to analyze the averaged dendritic potentials in

each of the fractions. We will use the notation d' =< d; >ieqjyi=1) and
7
d* =< dj >jcqjyh=qy- With the assumptions of the last subsection these
7

averaged quantities can be treated as random variables.

Of course, the synapses — randomly generated in the storage process — are
“quenched” in the retrieval so that dendritic potentials at different on-sites
or off-sites will behave differently. This suggests a memory model where the
threshold is adjusted seperately for each neuron, which has been treated in

[49] and will be discussed in Sect. 1.6.3.

1.3.3 BINARY STORAGE PROCEDURE

For binary storage, the dendritic potential at neuron j is: d;j = > xf/\;lij,
where the values of the binary Hebb matrix M are distributed on {0, 1}.
The probability that a matrix element is zero can be easily calculated

po = Prob[M;; = 0] = (1 — pg)™. (1.9)

We discuss the three cases of addressing a) to ¢) from Sect. 1.3.1 seperately.

a) Given z* as input pattern the expectation E(d' —d?®) = ny(1 — po) is
independent of the value a but the variance ¢%(d;) is minimal for a = 0.
So, optimally we choose @ = 0. Then we obtain for the dendritic potential
at an on neuron d' = n;. Thus we maximally can put © = n; to obtain
€1 = 0.

The second error probability is determined from the dendritic potential
at an off neuron

eq = Prob[d® > ©] = Prob[ [[My; =1|yf = 0]~ (1—po)™. (1.10)
ie{i:xle}

b) If we average over an ensemble of perfect patterns, where we adjust

the threshold individually for each input to ® = ny, then the threshold

becomes a random variable too. Now consider the fixed threshold setting
O = Eng for all input patterns. For this threshold choice we simply have
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to insert the expectation of ny into (1.10)
€q >~ (1 —po)™r. (1.11)

This fixed threshold setting leads to €1 (F©) > 0 because of patterns with
ny < Eng and to e, (FO) < Fey(O) because of the concavity of the function
€q(0). We will use (1.11) as approximation for the retrieval error e, with
the individual threshold adjustment.

¢) Finally for noisy addressing we obtain for the same fixed threshold
setting © = p'E(nq)

ey = (ea)? . (1.12)

Strictly speaking, the above calculation requires independence of the
entries /\;l” Although this is not the case it is shown Appendix 1 that at
least for sparse address patterns with m2/3p — 0 the entries /\;li]' become
asymptotically independent for large m.

1.3.4 INCREMENTAL STORAGE PROCEDURE

In incremental storage the contribution of each pattern pair is simply sum-
med up in the synaptic weights and we can devide the dendritic potential
in two parts: the signal part s, which is the partial sum coming from the
storage of the pattern pair (z*,y*) and the noise part N, the remaining
partial sum which contains no information about y]’»“. From equations (1.1)
and (1.5) we obtain

dj = N+s=) afMy=) > «fR(x,y)
7 7 l

ZfoR(xﬁ,yj)—l—foR(mf,yf)

7 l 7

The dendritic potential and its signal part has to be regarded separately

at an on neuron (y]k = 1) and at an off neuron (y]k =a):

s1i= > afR(xE 1) se= Y eFR(xE,a).

We now assume that for the noise parts F(Ny) = E(N,) holds and that
it is the wvariance of the noise o(N), which determines the mean facility
to solve the neural detection problem. Inspired by engeneering methods
we introduce the signal-to-noise ratio as a threshold setting independent

retrieval quality measure
7= F(s1 — sq)/c(N). (1.13)

The motivation to do so is quite intuitive: the threshold detection problem
can be solved for a lot of neurons for the same value @ if E(s; —s,) is large
and o(N) is low.

www.manaraa.com



X1V 1. Associative Data Storage and Retrieval in Neural Networks

The fidelity requirement that e, and e; should be small is equivalent to
the corresponding requirement that the signal-to-noise ratio r should be
large. How the retrieval errors are balanced between the two possible types
of retrieval errors is gouverned by the threshold setting. If both retrieval
error probabilities have to be below 0.5, the threshold has to satisfy Ed® <
© < Ed', Ed® being the expectation of the dendritic potential at an off
site.

Thus we put © = Ed* 4+ do(N)r = Ed' — (1 — 9)o(N)r with ¥ € [0.1].

For large m the noise term N can be considered as sum of a large number
of independent random variables and the central limit theorem holds. Then
we can estimate the error probabilities using a normal distribution and get

e1="Prob[d' -0 < 0]~G [-E(d*'=0)/a(N)| =G [-(1-9)r] (1.14)
€q = Prob[d* — O > 0] ~ G [-Vr] (1.15)

with the normal or Gaussian distribution G [x] := (1/v/27) . e~ 2.

To obtain explicit values for the error probabilities we now have to ana-
lyze the signal and noise term in (1.13) for the different ensembles of input
patterns and different learning rules (Section 2.2).

For input ensembles we are interested in the mean retrieval errors where
for every input the threshold has been set in the optimal way according
to the number of active input digits 7. We insert the signal-to-noise ratio
averaged over an input ensemble into (1.14) and consider a fixed thres-
hold setting which is equal for all input patterns. As to binary storage we
take this result as an approximation for the individual threshold adjust-
ment which is equivalent to an exchange of the expectations of the pattern
average and the input average in the calculation.

Signal-To-Noise Calculation

Again we discern the three cases of addressing described in Sect. 1.3.1.
a) For the faultless address z* as input the signal is sharply determined
as

$1— 8q = ni(rg —r3) — (m —ny)a(rs —ry).
The noise decouples into a sum of (M — 1) independent contributions cor-
responding to the storage of the pattern pairs (z!,y') with { # k. For
every pair the input z* generates a sum of n; random variables R(z,y)

and of (m — ny) random variables aR(x,y) at a neuron j. The variable
R(z,y) = R(=!, yj) is the four-valued discrete random variable (1.4) with

the distribution: (1 — p)(1 — ¢),p(1 —q), (1 — p)q, pq.
With F(R) and o?(R) denoting expectation and variance of R(z,y) a
simple (but for ¢?(N) tedious) calculation yields
E(N) = (M—=1)[n1+ (m—ny)a] E(R) (1.16)
c*(N) = (M —-1){Qi0*(R)+ Q2 Cov[R;Ry]} (1.17)
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where we have used the abrevations

Q1 = ni+(m—ny)d’
Q> = ni(ny — 1)+ 2an(m—ny)+a*(m —ny)(m —ny — 1)
Cov[RiRy] = q(1=g)[p(ra—rs)+ (1= p)(rs — )]’
The covariance term: Cov[R;Rp] := Cov[R(xﬁ,y})R(xlh,y;)] measures

the dependency between two contributions in the ¢-th and A-th place of the
column j upon the synaptic matrix.

b) If we average over the ensemble of perfect input patterns we can use
again for large m the approximations ny /m ~ (ny—1)/m ~ (n1+1)/m ~ p
and
(M —1)/m >~ M/m and obtain

E(s1—s4) = m[p(ra—rs) — (1= p)a(rs —r1)] (1.18)
E(N) = (M= 1DmpE(R)

In equation (1.17) we have to insert
O :m[p+(1—p)a2] . Qo =m?pu’. (1.19)

¢) Finally, we consider the ensemble of noisy address patterns. In this
case

E(sy = s3) = m[p(p’ + (1 = p')a)(ra — rs) — (1 — p)a(ra — r1)] . (1.20)
In the description of the noise we only have to replace in (1.18) and (1.19)
p by pp" and p by p'.

Signal-to-noise Ratios for Explicit Learning Rules

Regarding (1.17) and (1.18) we observe that the signal-to-noise ratio is the
same for the rules R and bR + ¢, where ¢ is an arbitrary and b is a positive
number. Two rules that differ only in this way, will be called essentially
tdentical. Thus we may denote any rule R as

R=(0,r2,73,74). (1.21)

The following formulae are written more concisely if we introduce instead
of r9, r3, 74 the mutually dependent parameters

YI=Tr4—Tz—1T2 , K:=Ta+7yp , N:=73+7q.
In this notation the variance of the rule becomes

o*(R): = E(R?)—(E(R))
= 7’p(1—p)+x7¢(1—q) +7’p(1 — p)g(1 — q)

www.manaraa.com



XVi 1. Associative Data Storage and Retrieval in Neural Networks

In the description of the input ensemble we transform from the parameters
p, a to the quantities p, i, see (1.7).

The signal-to-noise ratio averaged over perfect address patterns b) is
then obtained from equation (1.13) as

[k + (1 = p)py]°

r? = (m/M . 1.22
P (e T G T T
Averaged over noisy address patterns ¢) we obtain equivalently
/ 1— /.12
P2 = (m/M) [p's 4+ (A=p)pr'7] (123)

[pp’ + (1 —pp')? /(1 =pp')] o*(R) + mg(1—q)p'*k?

with the definition for p’ taken from (1.8).

Optimal Learning Rule

The expression (1.22) invites to optimize the signal-to-noise ratio in terms
of the three parameters v, k and 75 so as to yield the optimal learning rule
Ry.

The parameter 1 appears only in ¢(R) in the denominator. We first
minimize o%( R) with n = 0 and obtain

7“2 — (ﬂ) [/'“f + (1_ﬂ)p7]2
M7 q(1=g){[p + (p—p)*/(1 = P [F*+7°p(1—p)] + mp??}

The (large) factor m in the second term of the denominator in eq. (1.24)
makes this term dominating unless at least one of the other factors & or p
vanishes.

At a first sight we have to distinct two cases which differ with respect to
the average activity u of the input patterns:

(1.24)

e FEither p stays away from zero, then it is optimal to choose x = 0
(case 1).

e Or p — 0 fast enough to make the second term negligible in the sum
of the denominator in eq. (1.24). However, if we insert g = 0in (1.24),
again £ = 0 turns out to be the optimal choice (case 2).

Thus both cases leave us with x = 0 and 1 = 0 and yield the covariance
rule as general optimal rule

Ro = (pg, —p(1 — q),—q(1 —p), (1 = p)(1 — q)). (1.25)

The condition g = 0 will occur several times in the sequel, and will be
referred to as the condition of zero average input activity. In particular, for
p = 0.51t implies « = —1 and for p — 0 this implies ¢« — 0. This condition,
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which is equivalent to a = —p/(1—p) or to p = —a/(1 —a) fixes the optimal
combination between input activity and the model parameter a.

For arbitrary p and a in the input patterns and for arbitrary p, the
optimal signal-to-noise ratio is evaluated by inserting Ry in eq. (1.24),

(1—p)p

s ) (R M
Transforming back from p to a we obtain
12 = (/) —PE =P = a)” (1.27)

[p+ (1 =p)a’lq(l—q)
Insertion of the zero average input condition g = 0 in (1.26) yields the
optimal signal-to-noise ratio
m
Mq(1-q)
Optimizing the signal-to-noise ratio for noisy addresses ¢), eq. (1.23)
leads to the same optimal rule (1.25). Then the signal-to-noise ratio value

for perfect addressing is reduced from the noise in the input patterns. For
the optimal rule Ry with g = 0 it is given by

V2 o

(1.28)

/2
NV Chud ) ) (1.29)
P =2pp +p
For learning rules with x # 0 which have a nonzero covariance term only
i = 0 can supress the m? term in the variance of the noise. Therefore,
k # 0 and g # 0 lead to vanishing r as m — oo. A little algebra shows that
learning rules with 4 # 0 and finite v also yield a vanishing r. In conclusion
all suboptimal rules need g = 0 to achieve a nonvanishing r.

Hebb and Agreement Rule

If we compare the Hebb rule and the agreement rule to the optimal lear-
ning rule Ry we realize, that in general both rules are suboptimal. But
nevertheless, for p = ¢ = 0.5 the optimal rule becomes equal to the agree-
ment rule: Ry = (0.25,—0.25, —0.25,0.25) and for p,¢ — 0 the Hebb rule
is approximated by the optimal rule: Ry — H.

By equation (1.22) one can compute the signal-to-noise ratio for these
rules,; the results for g = 0 you find in Table 1.

As expected, the Hebb rule becomes essentially identical to Ry for p, ¢ —
0. In the a = 0 model, where the parameter a is not adjusted to guarantee
it = 0 we need a stricter sparseness in the address patterns: mp? — 0 to
provide p — 0 fast enough to preserve the essential identity between H
and Rg.

By comparing the #? values corresponding to the different rules in Table
1 we will derive the performance analysis of Hebb and agreement rule (see
Section 5.2 and 5.4) from the analysis of Ry carried out in this section.
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TABLE 1.1. Squared signal-to-noise ratios r°(m, M, p, ¢) for u = 0.

| Optimal rule Rq | Hebb rule H | Agreement rule C |

m m(1 —p) 8mp(1l — p)
Mq(1—-yq) Mq(1—pq) | M[p(1—q)+(1-p)]

Summary

With incremental storage procedure the signal-to-noise ratio analysis of
one-step threshold-detection retrieval led to the following results:

1.4

If a rule R yields the signal-to-noise ratio r then any rule bR+ ¢, with
b positive yields the same signal-to-noise ratio. We call these rules
essentially identical.

For any rule R the best combination of the parameters p and a is
given by the zero average input condition = p+ (1 — pla = 0.

The maximal signal-to-noise ratio ry is always achieved for the co-
variance rule Ry (1.25). For increasing p the value rg continously
decreases and reaches 7o = 0 at g = 1.

Every rule essentially different from Ry has zero asymptotic signal-
to-noise ratio, if the condition y = 0 is violated.

The Hebb rule becomes essentially identical to Ry for memory tasks
with ¢ — 0 and p — 0, i.e., for sparse address and content patterns.

The agreement rule is equal to Ry for p = ¢ = 0.5.

Storage of extensively many patterns, i.e., M/m > 0 as m — oo: In
this case Ry and H achieve asymptotically vanishing errors (r — o)
for memory tasks with sparse content patterns: ¢ — 0 as m — oo.
The agreement rule A only achieves r = const as m — oo.

Information Theory of the Memory Process

How can the performance of an associative memory model be measured 7

In our notation a given memory task specifies the parameters: p, ¢, M, p/,
€q,€1. From the signal-to-noise ratio analysis we can determine for ran-
domly generated patterns the maximal number of pattern pairs M*, for
which the required error bounds e, e; are still satisfied. Then the first idea
is to compare the M* to the number of neurons used in the memory model.

This quotient of patterns per neuron o« = M*/n is used in a lot of works
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but this measure disregards the parameter ¢ used in the random generation
of the content patterns as well as the whole process of addressing.

In the following we use the description of elementary information theory
to find performance measures for the memory task and compare them with
the size of the storage medium, viz., the number of synaptic connections
n X m.

1.4.1 MEAN INFORMATION CONTENT OF DATA

Every combination of a memory problem and a coding algorithm will lead
to a set of content patterns which exhibit in general very complicated sta-
tistical correlations.

For a set of randomly generated patterns & which we have used to carry
out the signal-to-noise ratio analysis each digit was chosen independently.
The mean information contained in one digit of a pattern is then simply
given by the Shannon information [40] for the two alternatives with the
probabilities p and 1 — p

i(p) = —plogs p — (1 — p)logy(1 — p)

and the mean information content in the set of randomly generated content
patterns S¢ is I(8Y) = Mn i(q) where ¢ is the ratio between 1- and a-
components in each content pattern. The pattern capacity compares the
mean information content of the content patterns with the actual size m xn
of the storage medium and is defined as

P(m,n) := mﬁX{I(SC)}/nm = M~"i(q)/m. (1.30)

Here M* equals the maximum number of stored patterns under a given
retrieval quality criterion. The definition (1.30) is an adequate measure of
how much information can be put in the memory but not at all of how
much can be eztracted during the retrieval. A performance measure should
also consider the information loss due to the retrieval errors.

1.4.2 ASSOCIATION CAPACITY

The memory can be regarded as noisy information channel consisting of
two components (see Fig. 2): The channel input is the set of content pat-
terns 8¢ and the channel output is the set of recalled content patterns S€
afflicted with the retrieval errors. The two components correspond to the
storage process where the sets S4 and S¢ are transformed into the synaptic
matrix and to the retrieval process where the matrix is transformed into a
set of memory output patterns S€. The retrieval error probabilities specify
the deviation of S¢ from 8¢ and thus the channel capacity.
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T(8¢,8%)
Retrieval,
) — Storage — M 3 Adres-
mem. task mem. matrix sing ret. output

FIGURE 1.2. Output capacity: Information channel of storage and retrieval. (The
abbrevations “mem.” for memory and “ret.” for retrieval have been used.)

The capacity of an information channel is defined as the transinformation
that is contained in the output of the channel about the channel’s input.
The transinformation between S¢ and S¢ can be written

T(8Y,8%) = 1(8) — 1(8° | §Y), (1.31)

where the conditional information I(SC | S€) is subtracted from the infor-
mation content in S¢. It describes the information necessary to restore the
set of perfect content patterns S from the set S€. For random generation
of the data we obtain

~ M
I(8 [ 8)/nm = —I(y} | 5F) (1.32)
m
with the contribution of one digit

1y} | )=Prob[i = 1Ji(Probly} =0 | 3 = 1])

:[q(l — 61) + (1 - Q)ea] Z<q(1 _ fi)_—kq()ja_ Q)ea)

Hger + (L= q)(1—e0)] (q iRy ea)) - (133)

Now we define the assoctation capacity as the maximal channel capacity
per synapse

*

A(m,n) := mj‘?XT(SC,SC)/mn = P(m,n)— M

m

I 1. (130)

The capacity of one component of the channel is an upper bound for the
capacity of the whole channel: The capacity of the first box in Fig. 2 will be
called storage capacity (discussed in [41]). The maximal memory capacity
that can be achieved for a fixed retrieval procedure (i.e. fixing only the last
box in Fig. 2) will be called the retrieval capacity.

www.manaraa.com



Giunther Palm , Friedrich T. Sommer XX1

ret. output

T(S9,8°) = T(8°,8°)

Addreséing

FIGURE 1.3. Completion capacity: Information balance for autoassociation. (The
abbrevations “mem.” for memory and “ret.” for retrieval have been used.)

1.4.3 INCLUDING THE ADDRESSING PROCESS

The defined association capacity is a quality measure of the retrieved con-
tent patterns but the retrieval quality depends on the properties of the
input patterns and on the addressing process. Of course, maximal associa-
tion capacity is obtained for faultless addressing and with growing addres-
sing faults (decreasing probability p’) the association capacity A decreases
because the number of patterns has to be reduced to satisfy the same re-
trieval error bounds. To include judgement of addressing fault tolerance for
hetero-association we have to observe the dependency A(p').

For auto-association where S4 = 8¢ we will consider the information
balance between the information already put into the memories input and
the association capacity (see Fig. 3).

This difference gives the amount of information really gained during the
retrieval process. We define the completion capacity for auto-association as
the maximal difference of the transinformation about S¢ contained in the
output patterns and contained in the noisy input patterns &4,

C(n) = H;gX{T(SC|SC)—T(SC|SC)}/712. (1.35)
From (1.31) we obtain
C(n) = maX{I 8°18%) - (sC|SC)}/n2
= mac {0 164 199~ 16 130} /m (136)

In (1.36) we have to insert again the maximum number of stored patterns
M?* and the conditioned information to correct the retrieval errors; cf. eq.
(1.33). In addition the one-digit contribution of the conditioned information
necessary to restore the faultless address patterns S4 from the noisy input
patterns 84 is required. It is given by

Iy o) = (L —pp')i (M). (1.37)

pp
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Note that for randomly generated content patterns, i.e., with complete
independence of all the pattern components y¥, one usually reaches the
optimal transinformation rates and thus the formal capacity.

1.4.4 ASYMPTOTIC MEMORY CAPACITIES

In Sect. 3 we have also analyzed the model in the thermodynamic limit,
the limit of diverging memory size. For asymptotic values for the capaci-
ties in this limit we will not only examine memory tasks where the fidelity
requirement remain constant. We will examine the following asymptotic
fidelity requirements on the retrieval which distinguish asymptotically dif-
ferent ranges of the behaviour of the quantities e, and e; with respect to
g — 0asm,n— oc:

e The high-fidelity or hi-fi requirement: ¢; — 0 and e,/¢ — 0. Note
that for ¢ — 0 the hi-fi requirement demands for both error types
the same behaviour of the ratio between the number of erroneous
and correct digits in the output: d, ~ dy — 0 with the error ratios

defined by dg :=e,/q and dy :=e1 /(1 — q).

e The low-fidelity or lo-fi requirement: e; and e, stay constant (but
small) for n — oo

With one of these asymptotic retrieval quality criteria the asymptotic
capacities P, A and C are defined as the limits for n,m — co and n — oo,
respectively.

1.5 Model Performance

1.5.1 BINARY STORAGE

Output capacity

In this memory model the probability pg = Prob(M,; = 0) is decreased, if
the number of stored patterns is increased. Since obviously no information
could be drawn from a memory matrix with uniform matrix elements we
will exclude the cases pg = 1 and pg = 0 in the following.

For faultless addressing the maximal number M™ of patterns which can
be stored for a given limit on the error probabilities can be calculated by

(1.9) and (1.10),

] _ [l ()]

= ) 1.38

Inf1 — pq] In[1 — pq] (1.38)

From (1.34) we obtain for e; = 0 and e := ¢, << ¢ the association
capacity

A(m,n) = (M"/m){i(q) — (1 — g)elog,[e(1 — ¢)/q]} - (1.39)

www.manaraa.com



Gunther Palm , Friedrich T. Sommer XXl
---m =512
09 o m = 1096 067
T — m = 1048576 ) -
0.4 N
o 0 | S L
T ;' \ ~
0.2 ! T~
h ~ .
0 | T T s| —— 0.0 | f f T
0.000 0.008 0.016 0.000  0.008 0.016
P P

FIGURE 1.4. Binary storage in finite memory sizes: Number of stored patterns
o and output capacity A in bits/syn with the lo-fi requirement d = 0.01 for p = ¢
and n = m.
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FIGURE 1.5. Retrieval error ratio d = eq/k of simulations along the a-p curves
of Fig. 4 for di} ., = 0.01 . For low p values, the experimental error is even
lower than predicted because we used learning patterns with a non fluctuating
activity in the simulations. For higher p values, the theoretic values are too small
because in this range the effects of statistical dependence between different matrix
elements should not be neclected.

In Fig. 1.4 we have plotted a): @« = M™*/m and b): the association capacity
against p for ¢ = p and the constant error ratio d = e,/p = 0.01 for three
finite memory sizes. Figure 1.5 shows simulation results for the error ratio
d. For low p values, the experimental error is even lower than predicted
because we used learning patterns with a non-fluctuating activity in the
simulations. For higher p values the theoretic values are too small because
in this range the effects of statistical dependence between different matrix
elements cannot be neclected. Nonvanishing asymptotic association capa-
city requires M*/m > 0 as m — oo. In equation (1.38) this can be obtained
either for py — 0 which we have already excluded or for pg — 0. In this
case we obtain

M* ~ ln[po].
—Pq

(1.40)
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The hi-fi requirement leads with (1.11) to the following condition on p and
q:

€q/q = exp (mp In[l — pg] — Infq]) — 0. (1.41)

In the case ¢ — 0 the requirement (1.41) is satisfied, if we put

(1.42)

with the positive number u > — ( In[l — po])”". Inserting (1.42) in (1.40)
we obtain the inequality

m In[pg] In[1 — po]

M* <
—q In[q]

(1.43)

which can be put into (1.39) yielding for py = 0.5 and m — oo the maximal
association capacity: A ~ 0.69 bits/syn.

Note that for auto-association and for hetero-association with p = ¢, m =
n equation (1.42) implies that

p o In[n]/n (1.44)

and

M* ( lnn[n])2 . (1.45)

The relation (1.45) has already been obtained in [42, 43] for sparse memory
patterns with arbitrary learning rules by regarding the space of all possible
synaptic interactions; cf. Sect. 1.6.3.

For singular address patterns and arbitrary ¢ = const, however, errorfree
retrieval is possible for M* < m, which 1s the combinatorical restriction for
nonoverlapping singular patterns. In this case, with (1.39) an association
capacity of A = i(¢) < 1 bits/synapse is obtained.

For constant p equation (1.42) demands asymptotically empty content
patterns: ¢ o< exp (—mp/u), leading to vanishing association capacity.

For singular content patterns the combinatorial restriction M* < m also
yields vanishing association capacity.

Fault Tolerance and Completion Capacity

In the case of noisy input patterns (1.12) the hi-fi condition becomes :
€q/q = exp (mpp’ In[l — po] — In[q]) — 0. Like in the preceeding subsection
we obtain the maximal number of patterns by M™* = p’ M* where M* is
the value for faultless addressing (1.43).

Thus for hetero-association the association capacity exhibits a linear de-
crease with increasing addressing fault: A(p’) = p’ A.
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FIGURE 1.6. Binary storage in finite memory sizes: Completion capacity C' in
bits/syn for two lo-fi values, the maximum has always been achieved for addres-
sation with p’ = 0.5.

For auto-association with the hi-fi requirement the retrieval error term
in the completion capacity (1.36) can be neglected like in the association
capacity and we obtain for p — 0

c = Hﬁx{(M’*/n)(l —pp)i (@) }

rp
gl bl 1)
p! 111[2]

} = 0.17 bits/syn (1.46)

for pp = 0.5 and p’ = 0.5.

In Fig. 1.6 the completion capacity is plotted against p for three finite
memory sizes and for the constant error ratios a): d = e,/p = 0.01 and b):
d = 0.05. The optimum is always obtained for p’ = 0.5.

1.5.2 INCREMENTAL STORAGE
Output capacity

For faultless addressing, zero average input and the optimal rule Ry, the
maximal number of stored patterns for a given signal-to-noise ratio value
7 is obtained from equation (1.28)

M* = m/(r*q(1 - q)). (1.47)

If the threshold setting provides e,/¢ = e1/(1 — q) =: d, the association
capacity can be computed for small fixed values of the error ratio d from

(1.34) and (1.47)

i(g) + (1 — ¢)d {log,[¢d] + logy [(1 — ¢)d]}

A~
r2q(1—q)

(1.48)
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FIGURE 1.7. Model with incremental storage, fullfilled condition of zero average
input and m,n — oo : Number of stored patterns a (left) and asymptotic output
capacity A in bits/synsapse (right) for p = ¢ with the lo-fi requirement d = 0.01.
The optimal rule R is approached by the agreement rule A for p = 0.5 and by
the Hebb rule for p — 0. For p — 0, the lo-fi output capacity values of optimal
and Hebb rule reach but do not exceed the hi-fivalue of A = 0.72 bits/synapse
(This can only be observed, if the p scale is double logarithmic; see Fig. 5 in
[Pa91]).

With substitution of r = G~ [¢d] + G=1 [(1 — ¢)d] in (1.48) we obtain the
association capacity for the rule Ry for a constant d error ratio, the lo-fi
requirement. (G~ [z] is the inverse Gaussian distribution.) In Fig. 1.7 we
display the association capacity values for optimal, Hebb and agreement
rule, the latter two obtained by comparison of the signal-to-noise ratios in
Table 1, Sect. 1.3.4.

The hi-fi requirement can only be obtained for r — o0 as m — oo
in (1.47) which is possible either for M*/m — 0, leading to vanishing
association capacity or for ¢ — 0, the case of sparse content patterns,
which we focus on in the following.

We now choose a diverging signal-to-noise ratio by

r=+/—2lIn[q]/J. (1.49)

The threshold has to be set asymmetrically: ¢ — 1 because for sparse
patterns e, /e; — 0is demanded. (This implies ¢ = exp[— (797“)2 /2], yielding
with Appendix 2: e,/q =~ (7r2/2)~1/? — 0. If the threshold ¥ approaches
1 slowly enough that still (1 —d)r — oo holds, then also e; — 0 is true and
the hi-fi requirement is fullfilled.)

With vanishing e/¢ equation (1.48) simplifies asymptotically to

2elog, (€]

A> P+ ~ P

2
-
Again the information loss due to retrieval errors can be neclected due to
the high fidelity requirement.
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Inserting (1.49) in (1.47) we obtain for zero average input and the optimal

rule Ry

M* = m/ (~2q(1 = q) Infg) (1.50)

which again can also be found with the Gardner method [42, 43]; cf.
Sect. 1.6.3.

With (1.50) and (1.30) we obtain as asymptotic association capacity with
the hi-fi requirement: A = 0.72 bits/syn.

In contrast to the model with binary storage — where only for sparse
content and address patterns a positive association capacity has been ob-
tained — with incremental storage an association capacity A = 0.72 bits/syn
is achieved even for memory tasks with nonsparse address patterns. Howe-
ver, for {0, 1}-neurons we are again restricted to sparse address patterns
because for nonsparse address patterns the zero average input condition
cannot be satisfied.

With singular address or content patterns which are no interesting cases
for associative memory as we will discuss in Sect.1.6.1, incremental and
binary storage form the same memory matrix and achieve exactly the same
performance; see last part of Sect. 1.5.1.

Fault tolerance and Completion Capacity

For hetero-association with noisy addressing we obtain the association ca-
pacity for zero average input and Ry by using equation (1.29) (remember
that r? oc m/M)

1— p)p/Z
Alp') = (714 1.51
For p = 0.5 this implies A(p’) = p'*A and for p — 0 like in the binary
case A(p') = p'A.
For auto-association with the hi-fi requirement we obtain in a way similar

to (1.46)

) 9%/ (1= Ylogylp(1— 1)
) = mp| 2 Tny) }

792 "(1—p'
H})E}X{%} = 0.18 bits/syn

1

Again the maximum is reached for p’ = 0.5 and ¥ — 1.

A similar optimization in p’ can be carried out for fixed values of p and
lo-fi requirement; see Fig. 1.8. In this case the optimum is reached for p’/
larger than 0.5.
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FIGURE 1.8. Incremental storage for n — co: Completion capacity in bits/syn
with the lo-fi requirement d = 0.01. The optimal p’ in the addressing has been

| | | |
0.0 0.1 0.2 03 04 05

p

determined numerically (right diagram).

nonsparse sparse singular
content content content
nonsparse - incr. Ry -
address
sparse - incr. Ro, H -
address bin. H
singular incr. Ro, H - -
address bin. H

TABLE 1.2. Models which yield A > 0 for the hi-fi requirement in different
memory tasks. (incr.=incremental storage, bin. = binary storage. For instance:
incr. Rg, H denotes the incremental storage model either with optimal rule or with

Hebb rule.)

1.6 Discussion

1.6.1 HETERO-ASSOCIATION

In applications of associative memory the coding of address and content
patterns plays an important role. In Sect. 1.1 we distinguished three types of
pattern leading to the memory tasks defined in Sect. 1.4; singular patterns
with only a single 1-component, sparse patterns with a low ratio between
the numbers of 1- and a-components and nonsparse patterns. To get a
general idea Table 2 shows those memory models which achieve association
capacity values A > 0 under the hi-fi requirement. Note that only Hebb
and the optimal learning rule in memory tasks with sparse or singular
patterns yield nonvanishing hi-fi association capacity. In the following we
shall consider the different types of content patterns subsequently.
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binary incremental
H H | R
nonsparse - - A=0.72
address - - p'?
sparse A=069 | A=072 | A=0.72
address p’ p’ p’

TABLE 1.3. Hi-fi association capacity values of the different models for sparse
content patterns. As a measure of addressing fault tolerance (cf. Sect. 1.3) in the
second line of each cell the reduction factor for faulty addressing is displayed.
For instance, with sparse address and content patterns the Hebb rule in the
incremental storage yields A = 0.36 bits/syn, if in the addressing p’ = 0.5 is
chosen.

Nonsparse Content Patterns

Only in combination with singular address patterns do nonsparse patterns
achieve high association capacity. In this case, qualified in Sect. 1.4 as the
look-up-table task, all rules achieve A = 1. The associative memory works
like a RAM device where each of the m content patterns is written into one
row of the memory matrix M and, therefore, trivially A = i(q). However,
this is no interesting case for associative storage because the storage 1s not
distributed and in the recall no fault tolerance can be obtained: A(p’) =0
for p’ < 1.

Sparse Content Patterns

Combined with sparse or nonsparse address patterns sparse content pat-
terns represent the most important memory task for neural memory mo-
dels with Hebb or optimal learning rule where high capacity together with
associative recall properties is obtained. For optimal association capacity
many patterns in the set of sparse learning patterns will overlap. Therefore,
in the learning process several pattern pairs affect the same synapse and
distributed storage takes place. In Table 3 the hi-fi association capacity
values can be compared. For sparse address patterns, Hebb and optimal
rule achieve exactly the same performance because with the zero average
input condition both rules are essentially identical. Even the binary Hebb
rule shows almost the same performance. At a first sight it is striking that
binary storage, using only one bit synapses, yields almost the same perfor-
mance as incremental storage, using synapses that can take many discrete
values. This fact becomes understandable, if we consider the mean contri-
butions of all patterns at one synapse by incremental and by binary storage:
EM = 0.69 for incremental compared with EAM = 0.5 for binary storage.
In both cases the sparseness requirement prevents the matrix elements from
extensive growth; also in incremental storage the vast majority of synapses
take only the values 0, 1, and 2.
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For nonsparse address patterns only the optimal setup, namely, the rule
Ry in the incremental storage, achieves nonvanishing association capacity.
This case i1s of less importance for applications since implementation is
much more difficult (higher computation effort for a # 0 and the determi-
nation of the value of a requires the parameter p of the patterns).

Relaxing the quality criterion does not enhance the association capacity
value in the sparse limit. The lo-fi association capacity values, plotted in
Fig. 4 and Fig. 7 do not exceed the hi-fi values of Table 3. With the agree-
ment rule finite lo-fi association capacity values can be achieved (see Fig.
7) whereas the hi-fi association capacity always vanishes.

Singular Content Patterns

The neural pattern classifier which responds to a nonsingular input pattern
with a single active neuron is often called “grandmother model” or percep-
tron. Here the information contained in the content patterns is asympto-
tically vanishing compared to the size of the network: A = 0. Again no
distributed storage takes place.

1.6.2 AUTO-ASSOCIATION

If content and address pattern are identical in order to accomplish pattern
completion in the retrieval, we have only to regard the cases of sparse and
nonsparse learning patterns.

Asymptotic Results

The amount of information that can be really extracted by pattern comple-
tion with high quality is given by the asymptotic hi-fi completion capacity.
It always vanishes in case of nonsparse patterns. For one-step retrieval with
sparse patterns we have determined C' = 0.18 and C' = 0.17 bits/syn for
the Hebb rule in incremental and binary storage respectively (Sects. 1.5.1
and 1.5.2).

Using a practically unrealistic fixed-point read-out scheme” and the Hebb
rule we have found completion capacity values of C' = 0.36 bits/syn for
incremental and C' = 0.35 bits/syn for binary storage [30, 23]. Thus one
would expect the performance of one-step retrieval to be improved by fixed-
point retrieval i.e., starting from a single address pattern and «terating the
retrieval process until the fixed-point 1s reached. Asymptotically, however,
fixed-point retrieval does not improve the one-step capacity results [44, 45,
46]. Tt is a consequence of the fullfilled hi-fi condition that already after the
first step we get asymptotically vanishing errors for diverging system size.

"Fixed points are patterns which remain unchanged during a retrieval step
i.e., input and output pattern are identical.
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FIGURE 1.9. Completion capacity C in bits/syn for iterative retrieval for addres-
sation with p’ = 0.5 which has been achieved in simulations in binary storage
with 4096 neurons. Depending on the number of stored patterns M an improve-
ment up to twenty percent (for M = 60000) can be obtained after the first step
through iteration.

Finite-Size Systems

Although Fig. 1.6 illustrates that the asymptotic capacity bounds are only
reached for astronomic memory sizes, even for realistic memory sizes sparse
patterns yield better performance than nonsparse patterns. Simulations
and analysis have revealed (again cf. [44, 45]) that iterative retrieval me-
thods with an appropriate threshold setting scheme (saying how the thres-
hold has to be aligned during the sequence of retrieval steps), yield superior
exploitation of the auto-association storage matrix as compared to one-step
retrieval; see Fig. 1.9. For finite systems, fixed-point retrieval does even im-
prove the performance and capacity values above the asymptotic value; e.g.
for n = 4096 about C' = 0.19 bits/syn can be obtained.

For a certain application and a given finite memory size, however, we
cannot reduce the pattern activity ad libitum by modifying the coding al-
gorithm. Then we may sometimes be faced with p >> In[n] /n; cf. (1.42).
In this case, binary Hebbian storage is ineffective — see Fig. 6 — and incre-
mental storage does not work either.

1.6.3 RELATIONS TO OTHER APPROACHES
Hetero-association

The zero average input condition for memory schemes with non-optimal
local synaptic rules was first made explicit by Palm [47] but appeared im-
plicitely in some closely related papers. Horner [48] has used it to define the
neural off-value @ in his model and Nadal and Tolouse [24] have exploited
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it (through their condition of ’safely sparse’ coding) as a justification for
their approximations.

The optimization of the signal-to-noise ratio r carried out by Willshaw
and Dayan [37] and independently by Palm [47] has already been sugge-
sted — though not carried out — by Hopfield [25]. Also Amit et al [8] have
proposed the covariance rule Ry.

The signal-to-noise ratio is a measure of how well threshold detection can
be performed in principle; independently of a certain strategy of threshold
adjustment. We have examined the model where the threshold assumes the
same value © for all neurons during one retrieval step and optimized the
response behavior depending on the individual input activity. So we could
lump together the on- and off- fractions of output neurons and calculate
the average signal-to-noise ratio.

In a recent work Willshaw and Dayan [49] have carried out a signal-to-
noise analysis using quite similar methods for a different model. In their
model the threshold setting ©; has been chosen individually for each neuron
for the average total activity of input patterns. Thus the signal-to-noise
ratio at a single neuron has been optimized for averaged input activity.
Due to this difference the results only agree for zero average input activity
and in the thermodynamic limit; for the same optimal rule the same signal-
to-noise ratio is obtained. In general, their model is not invariant under the
addition of an arbitrary constant in the learning rule because for E(R) # 0
activity fluctuations in an individual input pattern are not compensated
by threshold control as in our model.

Most of the results for hetero-association discussed here can be found
in the literature in Peretto [50], Nadal and Toulouse [24], Willshaw and
Dayan [37] and Palm [47, 51]). Some of our results are numerically identi-
cal to those of Nadal and Toulouse who employ different arguments (e.g.,
approximation of the distribution of the noise term (1.13) by a Poisson
distribution). In our framework one could also define a “no fidelity require-
ment”  namely e, and e; — 0.5, which would correspond to the “error-full
regime” of Nadal and Toulouse. This leads to the same numerical result
A = 0.46, which, however, is not very interesting from the engineering
point of view since it is worse then what can be achieved with high fide-
lity. The result for binary storage stems from Willshaw et al [4] for the
Hebb rule, and to Hopfield [25] for the agreement rule. A new aspect is the
information-theoretical view on the tradeoff between association capacity
and fault tolerance.

Auto-association

Auto-association has been treated extensively in the literature; see for ex-
ample [8, 25, 43, 26, 29]. In two points our treatment differs from most of
the papers on auto-association:
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e Usually models with fixed-point retrieval (and only with incremental
storage) have been considered.

e As the appropriate performance measure for pattern completion we
evaluate and compare the completion capacity which takes into ac-
count the entire information balance during the retrieval.

With one exception [48, 52] other authors regard (in our terms) the pat-
tern capacity, i.e., the retrieval starts from the perfect pattern as address®.
Hence, to compare the existing fixed-point results with our one-step retrie-
val for auto-association we should take the association capacity or pattern
capacity results; calculated in Sect. 1.5.2 for hetero-association, in the case
p=q.

For nonsparse patterns with p = 0.5, fixed-point retrieval with the lo-fi
requirement stays below one-step retrieval: for the same fidelity of d = 0.002
the one-step result for the agreement rule (Fig. 4) is higher than the Hop-
field bound for the fixed-point retrieval in [10, p.296]. Here one-step retrie-
val behaves more smoothly with respect to increasing memory load because
the finite retrieval errors after the first step are not further increased by
iterated retrieval. If the lo-fi fidelity requirement is succesively weakened, a
smooth increase of the one-step association capacity can be observed and
no sharp overload breakdown of the capacity (the Hopfield catastrophy)
takes place as it is known for fixed-point retrieval at the Hopfield bound
a. [25, 8, 29].

The pattern capacity for the binary agreement rule has been estimated
by a comparison of the signal-to-noise ratios for the binary and nonbinary
matrix in [25] and has been exactly determined in [26] as A® = (2/7)A. For
nonsparse learning patterns binary storage is really worse than incremental
storage.

Again, as for hetero-association, only for sparse patterns nonzero values
for the asymptotic hi-fi capacities can be achieved. For one-step retrieval
with @ = 0 we have found a hi-fi pattern capacity of P = 0.72 bits/syn.
For fixed-point retrieval, it has been possible to apply the statistical me-
chanics method to sparse memory patterns; cf. for instance [53, 27]. In [27]
just the same value P = 0.72 bits/syn has been obtained. By a combi-
natorial calculation we have also obtained this pattern capacity value for
fixed-point retrieval [30]. One-step and fixed-point retrieval yield the same
pattern capacity because for sparse patterns the hi-fi condition is satisfied.
It guarantees that almost all learned patterns are preserved in the first
retrieval step and hence are fixed-points.

8To obtain the pattern capacity, it is sufficient to study the properties of
the fixed-points as a static problem. Evaluating the completion capacity one has
to study how the system state evolves from a noisy input pattern in order to
determine the properties of the output pattern with a given address. This is a
dynamic problem which is in fact very difficult.
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Quite a different way to analyze the storage of sparse and nonsparse
patterns through statistical mechanics has been developed by Gardner [42,
43]. In the space of synaptic interactions, she has determined the subspace
where every memory pattern is a stable fixed point. For sparse patterns
this method yields the same pattern capacity value.

1.6.4 SUMMARY
The main concerns of this paper can be summarized as follows:

e The statistical analysis of a simple feed-forward model with one-step
retrieval provides the most elementary treatment of the phenomena
of distributed memory and associative storage in neural architecture.

e The asymptotic analytical results are consistent with the literature.
For auto-association, most of the cited works consider fixed-point re-
trieval which allows us to compare one-step with fixed-point retrieval.

e QOur information-theoretical approach introduces the capacity defini-
tions as the appropiate performance measures evaluating for the dif-
ferent memory tasks the information per synapse which can be stored
and recalled. Note that nonvanishing capacity values imply that the
information content is proportional to the number of synapses in the
model.

e For local learning rules sparse content patterns turns out to be the
best possible case, cf. [54]. High capacity values and distributed sto-
rage with fault tolerant retrieval are provided by the Hebb rule and
{0,1} neurons. Here the number of stored patterns is much higher
than the number of neurons constituting the network. The binary
Hebb rule — much easier to implement — yields almost the same per-
formance as the incremental Hebb rule. For auto-association one-step
retrieval achieves the same asymptotic capacity values as fixed-point
retrieval (for the finite-size model fixed-point retrieval yields higher
capacity values). The hi-fi condition can always be fullfilled by sparse
content patterns and only by these.
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many helpful discussions. We thank J.L. van Hemmen for a critical reading
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Appendix 1

In this section we show for the Hebb rule in binary storage the independence
of two different matrix elements. This is required in Sect. 3.2.
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Proposition 1 For the binary storage matriz M we have as n — oo

ProbMq;=1 and My;=1] 1 and ProbM;i1=1 and M;,=1]
Prob[M;i; =1]Prob[M,; =1] “ Prob[M;1=1]Prob[M;,=1]

provided p and ¢ — 0 and x := Mpq stays away from zero for n — oo.
Proof. Prob[M;; = 1] =1— (1 — pg)™.

Prob[M;;=1 and Ms;=1] = Prob[(Fk: zf=25=1 and y]l?zl)or
(Ell,m:a:ll,le:O,xT:O,xg@,yj.:Lygnzl)]

= 1—(p(£1)+p(E2) — p(E1L N Ey)),

Fy = [Vk :not (¥ =25 =1 and yf:l) and not (xlle,xgzo,y]kzl)]
and
Eo = [k :not (zf =2f=1 and y;»“ = 1) and not (xlfzo,xgzl,yle)].

Thus Prob(E;) = Prob(E3) = (1 — pg)™ and Prob(Ey N E3) = (1 —q(2p—
p)M.
Therefore we obtain
Prob[M;; =1 and Ms; = 1] — Prob[My; = 1] - Prob[My; = 1]

= (1-2gp+qp )™ — (1—pg)*™ = (1-2gp+qp*) — (1-2pg+p*¢*)¥
— o~ Mpg-p0) _ ~M(2pq-p?¢®) — e—ZPqM(eMPQq _ eMPQqQ).

Thus we find

Prob[M;; =1 and Ms; = 1] — Prob[My; = 1] - Prob[My; = 1]
Prob[M;y; = 1] - Prob[My; = 1]
e—2x(epx _ eqpx)

= 2 0

(=P

since px — 0 and pgz — 0.

This proposition shows the asymptotic pairwise independence of the ent-
ries M;; in the memory matrix M, since entries which are not on the same
row or column of the matrix, are independent anyway.

In order to show complete independence one would have to consider
arbitrary sets of entries M;;. In this strict sense the entries cannot be
independent asymptotically. For example, if one considers all entries in one
column of the matrix, then Prob[M,; = 0 for all i] = (1 — ¢)™ ~ e=M¢
which is with (1.9)in general not equal to p* = (1 — pg)M™ a e=Mmpe,
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Thus independence can at the best be shown for sets of entries of the
matrix M up to a limited cardinality L(n). The worst case, which is also
important for our calculations of storage capacity, is again when all entries
are in the same column (or row) of the matrix. This case is treated in the
next proposition, which gives only a rough estimate.

Proposition 2

ProbM;; =1 fori=1,....1]
Prob[M;; = 1]

— 1 forn — oo

as long as pl> — 0 and * = Mpq stays away from zero for n — oo.
Proof.
PI‘Ob[./\/lZ']' =1] < PI‘Ob[./\/ll]' = 1|./\/li]' =lfori=1,...,1—1]
< Prob[M;; =1| there are at least { — 1 pairs («¥, y*) with y]]»C =1]
= 1-(1-p "1 —py" ="+

Therefore
=1for:i=1,. 1—
0 < log M =1 Tor <Zlo —p) (-pa)
p[sz—l 1_ 1 pQ)
194 - —ip)p
= log 1 pq 0,
Z 1—P0 Z_: 1—P0
1_ . .
since (1_;;;)22(1—]))221—2'1),
-1 »
. 0
< 1 ,
since log(1+ ) < =,
. l
< b Po — —=0forp-1> =0,
1—])0 2
and if po=(1—pM m e MPl = =7 L1,

For (1.10) we need the independency of | = mp matrix elements, thus for
sparse address patterns with m?/3p — 0 the requirement of Prop. 2 is
fullfilled and the independence can be assumed.

Appendix 2

The following estimation of the Gauss integral G(t) is used in Sect. 5.2.
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Proposition 3
(2m2)" 2121 —42) < G(—t) = 1 — G(t) < (2mt2)~ /212

Proof. Since 2? = t? + (x — t)? + 2t(x — t), we have

o0 2 2 o0 2
/ e~ 2y = et /2/ e~ 2Ty
t 0

From this and with e=%"/2 < 1 we obtain the second inequality directly
since fooo e~*'dx = 1/t and the first one after partial integration

because [;° we~"'dx = 1/t.
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