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1Associative Data Storage andRetrieval in Neural NetworksG�unther Palm 1Friedrich T. Sommer 2ABSTRACT Associative storage and retrieval of binary random patternsin various neural net models with one-step threshold-detection retrievaland local learning rules are the subject of this paper. For di�erent hetero-association and auto-association memory tasks, speci�ed by the propertiesof the pattern sets to be stored and upper bounds on the retrieval errors, wecompare the performance of various models of �nite as well as asymptoti-cally in�nite size. In in�nite models, we consider the case of asymptoticallysparse patterns, where the mean activity in a pattern vanishes, and studytwo asymptotic �delity requirements: constant error probabilities and va-nishing error probabilities.A signal-to-noise ratio analysis is carried out for one retrieval step where thecalculations are comparatively straightforward and easy. As performancemeasures we propose and evaluate information capacities in bits/synapsewhich also take into account the important property of fault tolerance.For auto-association we compare one-step and �xed-point retrieval that isanalyzed in the literature by methods of statistical mechanics.1.1 Introduction and OverviewWith growing experimental insight in the anatomy of the nervous systemas well as the �rst electrophysiological recordings of nerve cells in the �rsthalf of this century, a new theoretical �eld was opened, namely, the mo-delling of the experimental �ndings at one or a few nerve cells, leadingto very detailed models of biological neurons [1]. But di�erent from mostbiological phenomena, where the macroscopic function can be understoodby revealing the cellular mechanism, the function of the nervous system asa whole turned out to be constituted by the collective behaviour of a verylarge number of nerve cells and the activity of a large fraction of cells, a1Abteilung Neuroinformatik, Fakult�at f�ur Informatik, Universit�at Ulm, Obe-rer Eselsberg, D-89081 Ulm, Germany2C. und O. Vogt Institut f�ur Hirnforschung, Universit�at D�usseldorf, Mooren-str. 5, D-40225 D�usseldorf, Germany
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ii 1. Associative Data Storage and Retrieval in Neural Networkswhole activity pattern, had to be considered instead.The modelling had to drop the biological faithfullness at two points:on the cellular level the models had to be simpli�ed such that a largenumber of nerve cells could be described and on the macroscopic levelthe function had to be reduced to simple activity pattern processing likepattern completion, pattern recognition or pattern classi�cation allowing atheoretical description and quanti�cation.McCulloch and Pitts [2] argued that due to the \all or none" characterof nervous activity the neurophysiological �ndings can be reproduced inmodels with simple two-state neurons, in particular, in associative memorymodels which exhibit binary activity patterns.In the �ftees and sixtees small feed-forward neural nets have been sug-gested for simple control tasks, among them the associative memory [3],[4], or the simple perceptron [5]. All these models employ one-step retrievalwhich means that in one parallel update step the initial or input pattern istransformed to the output pattern. Such models which contain no feed-backloops will be the main subject of this paper.Little, who introduced the Ising-spin analogy of the neural states 3 [6],opened the door to analyzing the feed-back retrieval process in neural netswith methods of statistical mechanics. The analysis which was devellopedduring the seventies [7] for lattices of coupled spins with randomly distri-buted interactions to describe spin glasses could be applied successfully to�xed-point retrieval in an associative memory [8]4. In �xed-point retrieval,the retrieval process is iterated until a stable state is reached. This methodhas been described in several recent books, e. g. van Hemmen and K�uhn[9], Amit [10] and Hertz, Krogh, and Palmer [11].This paper takes as starting point a larger class of simple processingtasks: the association between members of binary pattern sets. Dependingon properties of the randomly generated pattern sets we will characterizedi�erent memory tasks (Sect. 1) and concentrate on the question how aneural model has to be designed to yield optimal performance.We consider feed-forward neural associative memory models with one-step retrieval (Sect. 2). To keep our model as variable as possible, Ising-spinsymmetry of the neural states is not assumed and arbitrary local learningrules are admitted to form the synaptic connections. One-step retrievalcan be analyzed by elementary probability theory and it is compatible3The two states of a binary neuron are identi�ed with up and down statesof a spin particle in the Ising model, the synaptic couplings correspond to thespin-spin interactions.4Pattern completion with �xed-point retrieval in a neural net can be treatedlike relaxation in a solid, once the storage process has determined the dynamics.The macroscopic observables of the system (corresponding to speci�c heat, con-ductivity or magnetization in solids) are then the overlaps to stored patterns, orequivalently the recall errors.
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G�unther Palm , Friedrich T. Sommer iiiwith a larger class of memory tasks, not only pattern completion. On theother hand, as we will discuss, in cases of pattern completion a feed-backretrieval model is preferable. Section 3 contains the detailed signal-to-noiseratio analysis where we have included most of the calculations because theintention of this work is to provide not only results but also the methods.Another important question concerns the judgement of the performanceof di�erent memory models. Unfortunately, in the literature a lot of di�e-rent measures are used. Instead of staying with the mean retrieval errorsobtained from the analysis, we apply elementary information theory to thememory process, leading us to the de�nition of information capacities whichallow to compare models with di�erent memory tasks (Sect. 4).In Sect. 5 we evaluate these performance measures for the various models.The last section resumes the previous sections and points out the relationsto the literature. It compares one-step and �xed-point retrieval, takingadvantage of the works based on methods of statistical mechanics. Theresults of the di�erent approaches, which seem to be quite incoherent at�rst sight, turn out to be not only comparable but also consistent.1.1.1 Memory and RepresentationA memory process can often be considered as a mapping from one set ofevents into another set of events; as a trivial example one may think of theproblem how to establish a phone line to a friend. To solve the problem onehas to map the friends name to his phone number. For the constructionof a memory device like a phonebook which helps you with this problemone �rst has to map or to code the events \the friend's name" and the \hisphonenumber" into symbols, in this case strings of letters and numbers,which can be written and read by a user. This mapping will be called therepresentation of the events. The memory device has to store these pairsof strings in some way. It can solve the problem if the representation mapsthe events into unique data strings. Thus a given set of patterns specifythe memory task which a memory device has to solve.Without loss of generality we focus on binary patterns as data strings. Abinary pattern is a string containing only two types of elements, for instance\B" and \W" (for black and white pixels). We will restrict ourselves tosuch pattern sets where every member has approximately the same ratio pbeween the number of \B" and \W" digits. We call a pattern distributed,if both fractions of pixels have more than one member. Throughout thiswork we distinguish three di�erent patterns types:� A singular pattern has only one \B" digit out of m � 1 \W" digits,if m is the number of digits in the pattern. A singular pattern is byde�nition not distributed.� A sparse pattern is distributed but the ratio p between the number of\B" and \W" digits satis�es p << 0:5. In the in�nite model m!1
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iv 1. Associative Data Storage and Retrieval in Neural Networkswe will consider the sparse limit: p ! 0 with mp ! 1 which leadsto nontrivial distributed patterns.� In a nonsparse pattern the fraction p between the number of \B" and\W" digits has to be away from zero. In the in�nite model: p = constas m!1.1.1.2 Retrieval from the MemoryThe memory device has to store a set of patterns in such a way that adesired pattern can be selectively recalled at the output port. In the me-mory retrieval a desired output pattern is selected by applying a patternat the input port of the device. We will denote the set of output patternsthe content patterns SC .An input pattern which selects a content pattern will be called its addresspattern or simply its address. The set of address patterns will be denotedwith SA. Thus in the retrieval the memory device has to map from anaddress pattern to its corresponding content pattern. This map is de�nedby the set of pairs consisting of address and content pattern:f(x1; y1); :::; (xM; yM ) : xk 2 SA; yk 2 SCg:1.1.3 Fault Tolerance in AddressingBetween two patterns x and x̂ the number of di�erent bits h(x; x̂) de�nesa natural distance relation called the Hamming distance. Via this distancea whole set of input patterns may specify one desired content pattern un-iquely: all patterns x̂ with the property h(x̂; x) < h(x̂; xk) for all xk 6= xand x; xk 2 SA. We call a memory retrieval fault tolerant if it allows inputnoise in the sense that many input patterns which have a unique closestaddress are mapped on the content pattern belonging to this address.For a set of singular address patterns normally no x̂ 62 SA has a uniqueclosest address and therefore, fault tolerant retrieval is impossible. Thusfault tolerant retrieval can only be expected, if the address patterns aredistributed.1.1.4 Various Memory TasksWe call hetero-association the general memory task where the set of addresspatterns SA and the set of content patterns SC can be chosen arbitrarly.Below the following special cases of hetero-association will be considered:� If the address patterns are singular patterns, the memory task iscalled the look-up-table task. Then the singular pixel of an addresspattern points into a table of content patterns like the usual accessin a look-up-table.
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G�unther Palm , Friedrich T. Sommer v� For singular content patterns we can identify each bit of the contentpattern with a class in the set of address patterns. This memory taskcan be interpreted as pattern classi�cation which separates the setof address patterns in disjunct classes. This task (with one-bit con-tent patterns) has been executed by the classical simple perceptronmodels; see [5].� Auto-association is the case of hetero-association where address andcontent pattern are identical, therefore also denoted as content ad-dressability. Only for fault-tolerant retrieval the auto-association taskmakes sense; then the memory performs pattern completion from adistorted version x̂k as input pattern to the errorfree content patternxk; see also Forrest and Wallace in [9].1.1.5 Retrieval ErrorsA memory which allows errors in the addressing will perhaps also recallerroneously the wrong content pattern or put at least some errors in theoutput.In the retrieval of binary patterns there may occur two types of iperrors in a digit of the output pattern ~yk : A \W" of the content patternyk may be turned to a \B" and a \B" in the content pattern yk may beturned to an \W". Of course, with increasing addressing noise these errorswill also increase. But again via the distance relation it is possible that amemory output containing errors in some digits perhaps still speci�es theevent coded by the original content pattern. A given memory task togetherwith the sets SA and SC will �x the maximal mean errors which can betolerated in the retrieval. These upper bounds, which have to be satis�edby the error probabilities, will be called the �delity requirement.1.2 Neural Associative Memory ModelsThe typical ingredients of an arti�cial neural network model are a largenumber of similiar processor units called neurons, which obtain signalsthrough adjustable connections from a large number of input �bres and/orother neurons. In this model the adjustable connections, the synapses,connect an input port to each neuron.The two di�erent types of calculation in the model, the processing ofthe neural input signal in the retrieval on the one hand and the synapticadjustment according to the data in the storage phase on the other hand,are separated in time in this model; we distinguish the storage process andthe retrieval process.To perform the calculations the pixel types \B" and \W" in the inputpatterns have to be translated into signals which can propagate through
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vi 1. Associative Data Storage and Retrieval in Neural Networks
o mi

FIGURE 1.1. Schematic view of a neural associative memory. i: retrieval input�bres, o: retrieval output �bres (axons), m: modi�able synaptic connection be-tween neuron and input �bre. The horizontal lines are wires which propagate theinput signals to the synapses. Each column represents one neuron. The largerupper section where the synaptic connections access corresponds to the dendritictree and the lower section the cell body. The arrow pointing below from the cellbody corresponds to the axon.the network. We assign two di�erent values \1" and \a" to the pixel types\B" and \W"; each pattern is identi�ed with an n-vector x 2 fa; 1gn witha 2 [�1; 0], we will use synonymously the expressions pattern and fa; 1gvector. Of course, we are free to exchange \W" and \B" in the assignment;the ip transformation F applied to all components in the data will notchange the memory problem. Here F(xi = W ) := B and F(xi = B) :=W .Therefore we can always assign the value 1 to the smaller pixel fraction sothatp = ]fi : xi = 1g=(n� ]fi : xi = 1g) � 0:5.Such models have already been proposed and analyzed many years ago;e.g., Uttley [12], Steinbuch [3], Rosenblatt [5], Longuett-Higgins et al [13],Amari [14], Gardner-Medwin [15] and Kohonen [16].1.2.1 Retrieval ProcessIn the retrieval phase an address pattern is applied to the input port ofthe memory. The input signals are propagated via a synaptic connectionstrenghs matrix Mij to all neurons. In one-step retrieval every neuron jactualizes its state, the axonal activity ~yj, according to this input and thevector ~y is the retrieval output pattern.Each neuron has to form the dendritic potential dj, the sum over all itsincoming activities dj :=Xi Mijxi (1.1)
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G�unther Palm , Friedrich T. Sommer viiand then to determine the new activity value in the neural update equation~yj = f(dj ��): (1.2)The output signal of a biological neuron are trains of short electric pul-ses, the neural spikes. It is the spike rate and not the amplitude or theduration of a spike which is growing with increasing dendritic potential.This properties have been modelled in the so called spike coding models;cf [17, 18, 19, 20]. Here we focus on rate coding models where the neuraltransferfunction f(x) describes only the spike rate. In almost all of thesemodels f(x) is a monotonously increasing function. � is the threshold valuewhich can be adjusted globally for all neurons in each retrieval step.Models with linear transfer function, as for instance proposed in Kohonen[16] or Anderson [21, 22], lead for large networks to quasi continous valuedoutput patterns.Binary output patterns are obtained, if the neural transfer function isa two-valued stepfunction: f(x) = 1 for x � 0; f(x) = a otherwise.The neural state ~yj = 1 is called �ring or active, ~yj = 0 silent or passive.The retrieval error probabilities for on errors and o� errors respectively areexpressed by conditioned probabilitiese1 := Prob[~ykj = a j ykj = 1] ; ea := Prob[~ykj = 1 j ykj = a]: (1.3)Such models have been treated fromWillshaw et al. [4], Palm [23] and Nadaland Toulouse [24]. In one-step retrieval the output pattern is evaluated fromthe input pattern after one synchronious parallel calculation of all neurons.Step-shaped neural transfer functions have also been used in the spin-glass literature on auto-association, e.g. in [25, 8, 26, 27]. These worksconsider an iterative retrieval procedure, where via a feed-back loop thesignal ow through the system is iterated until a stationary state, a �xedpoint, is reached. Such �xed point retrieval has been considered for twodi�erent ways performing the iteration. In models with parallel updatethe complete one-step retrieval process is iterated in the manner that theoutput is fed back as new input; for instance in [6, 15, 28, 29, 30, 31]. Inmodels with sequential random update only one neuron, randomly selected,is updated (1.2) in one iteration step, leading to the new input, which onlydeviates in one component from the preceding one; see again [25, 8, 26, 27].The improvement due to iterated retrieval for the pattern completiontask obtained in simulations can be observed in Fig. 1.9.1.2.2 Storage ProcessIn this process, which is also called the learning process, the synaptic ma-trix, the storage medium, is formed from the set of patterns to be stored.During the storage process each pair (xl; yl) of patterns to be learned isapplied at the in- and output port of the memory. This provides a pre- andpostsynaptic value for every synapse Mij.
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viii 1. Associative Data Storage and Retrieval in Neural NetworksLearning RulesFor a given pair (x; y) of pre- and postsynaptic activity values the local syn-aptic rule R(x; y) determines explicitely the amount of synaptic connecti-vity change. For binary patterns there are only four di�erent constellationspossible for pre- and postsynaptic activities, viz., (a; a); (1; a); (a; 1), and(1; 1). Thus a synaptic rule is determined by four numbersR = (r1; r2; r3; r4): (1.4)The following two famous local learning rules will be focused in the subse-quent analysis:� The Hebb rule or asymmetrical coincidence rule H := (0; 0; 0; 1) in-creases the synaptic matrix element for coinciding pre- and post-synaptic �ring only. In his `neurophysiological postulate' Hebb [32]proposed this type of synaptic modi�cation between pairs of �ringnervous cells.� The agreement rule, Hop�eld rule or symmetrical coincidence ruleA := (1;�1;�1; 1) increases the synaptic matrix element for agreeingpre- and postsynaptic states and decreases the synaptic weight fordisagreeing states. This rule was used in the original Hop�eld model[25].The above rules are both product rules: R(x; y) = xy. For a = 0 we ob-tain the Hebb rule and for a = �1 the agreement rule and sometimes, forinstance in [33], both are considered as Hebbian learning. We retained thedistinction because in the original formulation of his postulate Hebb clearlytalks of the inuence of synchronously �ring neurons on their interconnec-ting synapse. The psychologist Hebb claimed this postulate to be inspiredby physiological and psychological �ndings while the symmetry between�ring and silence in the agreement rule is biologically very implausible.Storage ProceduresWe consider one-step learning which means that after one single presen-tation of every pair the formation of the synaptic matrix is �nished. Twodi�erent types of storage procedures will be examined:� The incremental storing procedure, where the synaptic matrix is givenby M = (Mij) := MXk=1R(xki ; ykj ) (1.5)� The binary storage procedure, where the synaptic matrix �M is obtai-ned fromM by another highly non-linear operation:�Mij := sgn(Mij) (1.6)
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G�unther Palm , Friedrich T. Sommer ixwith sgn(0) := 0.Storage procedures can be strictly local (as in most of the papers citedhere) or non-local (as for example in Personnaz et al [34, 35]). Dependingon the sign of the average connectivity change, they can be productive, de-structive or balancing for the total network connectivity (cf. [36, 37]). Localstorage procedures can make use of two (probably the majority) , three (su-pervised learning with additional teacher signal, e.g. Barto et al [38]) ormore terms to compute a synaptic change (compare Palm [36] again). Inthis paper we concentrate on storage procedures employing strictly localtwo-term learning rules.The most common synaptic arrangement in biological neural nets as inthe cerebral cortex (and the hippocampus) is the simple dyadic synapse.It connects just two neurons, the presynaptic and the postsynaptic one.Therefore there are just two natural, locally available activity signals: thepresynaptic and the postsynaptic activity.1.2.3 Distributed StorageOne reason of the big come back of systems with neural architecture inthe last decade is the fact that in computer science distributed proces-sing turned out more and more to be an indispensible goal. How does thesimple memory models introduced in this section display the property ofdistributed storage ?For hetero-association local rules store second order correlations betweenaddress and content pattern activity; for instance with the Hebb rule eachpair of active neurons (xki ; ykj ) a�ects one synapse Mij.The storage is called distributed, if the storage of one single pattern paircauses nonlocal changes in the storage medium. More than one element ofthe synaptic matrix is a�ected if at least one pattern in the pair is nonsin-gular, if either the set of address or content patterns contain nonsingularpatterns.Here we de�ne distributed storage in a stricter sense: we require thatmanymatrix elements carry information about more than one pattern pair.In this sense distributed information storage for arbitrary local rules isprovided only if both pattern sets, address and content patterns, containnonsingular and overlapping patterns. Then storage of several pattern pairswill a�ect the same synapses, so that each entry in the synaptic connectivitymatrixM may contain the superposition of several memory traces, i.e., formost index pairs (i; j) the sum Pk R(xki ; ykj ) should have more than onenonzero contribution. Like in holography an accessible content segment (apattern pair) is written widely spread in the storage medium and di�erentcontent segments will overlap.In the case of auto-association local rules store the second-order auto-correlation of the pattern activity; with the Hebb rule each pair of active
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x 1. Associative Data Storage and Retrieval in Neural Networksneurons in a learning pattern causes a change in one synapse. Distributedstorage requires the patterns to be nonsingular and overlapping.1.3 Analysis of the Retrieval ProcessThe aim of the present section is the analysis of one-step retrieval in theassociative memory after learning, i.e., after the storage process has formedthe memory matrix for a given memory task (SA;SC). In Sect. 1.1.5 andby eq. (1.3) we have introduced the quantities of interest in the analysis ofthis feed-forward system, viz., the mean retrieval error probabilities in anoutput pattern for a given input pattern.We already mentioned in the introduction that di�erent spatial scalescan be distinguished in the treatment of neural nets, the microscopic scaleof synapses and model neurons and the macroscopic scale of the collectivebehaviour of all neurons. What we presume about the model is on themicroscopic scale (neuron model, learning rules etc.), what we would like toknow from a theory is on the macroscopic scale, the collective behaviour ofthe whole set of neurons (retrieval errors). In physics it is quite usual to dealwith separable scales, for instance in thermodynamics the nuclear versusthe macroscopic scale. Physical mean-�eld theories which originally havebeen developed for spin-glasses5 yield asymptotic results for the retrievalerrors6 in the limit of in�nite system size: m;n!1 which is often calledthe thermodynamic limit of �xed-point retrieval in the associative memoryafter learning.We will consider memory tasks with di�erent mean ratios p betweenthe elements 1 and a in the pattern sets in the �nite model and in thethermodynamic limit, i.e., m ! 1. Curiously memory tasks with sparsepatterns, as de�ned in Sect. 1.1.1, will turn out to yield optimal asymptoticperformance.5Spin-glasses are magnetic solids with two di�erent competing fractions ofspin couplings. One fraction favors parallel, the other fraction anti-parallel spinalignment which cause irregular (glass-like) stable spin con�gurations. The mean-�eld theory provides values for the mean magnetization as macroscopic orderparameter.6The order parameters of a mean-�eld theory treating neural networks are theM overlaps fml; l = 1; :::;Mg where each overlap ml is de�ned as the number ofcommon pixels between retrieval output and the content pattern yl. If we applya (distorted) address pattern ~xk as input pattern, particularly one overlap isimportant for the retrieval quality, namely the overlap mk corresponding to theinput pattern. The theory provides a mean value < mk >, averaged over a largenumber of retrieval events which is equivalent to the retrieval error probabilitiesof Sect. 1.5.
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G�unther Palm , Friedrich T. Sommer xi1.3.1 Random Pattern GenerationTo apply probability theory for the estimation of mean retrieval error pro-babilities we have to assume the following properties of the the memorydata and of the distortion of the input patterns.Content and Address PatternsIn the memory tasks we assume the simplest model of the data to be stored,namely sets of randomly generated patterns. The value of each of the ndigits in a pattern xk 2 S is chosen independently with the probability:p := Prob[xki = 1]. A set of randomly generated patterns is �xed by threeparameters, the probability p, the dimensionality of a pattern n and thenumber of patterns M . We will use the following notation for address andcontent patternsSA := S(p;m;M );SC := S(q; n;M ). For hetero-association the sets SAand SC will be generated mutually independently.Input PatternsThe signal detection problem will be treated in three di�erent cases ofaddressing:a) A perfect address pattern as input pattern xk with n1 := ]fi : xki = 1gbeing the number of 1 components.b) An ensemble of perfect input patterns, where now the number of onesin the input pattern n1 becomes a random variable too. It is a bino-mially distributed variable and for large m the fraction n1=m will beclose to its expectation value p because of the strong law of large num-bers [39]. In the analysis the average input activity � of the ensemblewill become an important quantity which, for large m, equals� := [n1 + (m � n1)a]=m = p+ (1 � p)a: (1.7)c) An ensemble of noisy input patterns ŜA, which is generated by asecond random generation process from the set of address patternsSA used for learning. Here we concentrate on noisy input patterns,where x̂k 2 ŜA is a \part" of an address pattern xk in the followingsense: Prob �x̂ki = 0 j xki = 0� = 1 and Prob �x̂ki = 1 j xki = 1� =: p0.As for the faultless ensemble we describe the input activity for largem by the average input activity of the address ensemble�0 := pp0 + (1� pp0)a (1.8)In the analysis below we will use the prime to indicate the results forthe noisy input ensemble.
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xii 1. Associative Data Storage and Retrieval in Neural Networks1.3.2 Site Averaging and Threshold settingDepending on its dendritic potential (1.1) and the threshold value �j eachneuron j \decides" in the update process (1.2) whether it should be activeor silent. This can be regarded as a signal detection problem on the randomvariable dj which every neuron has to solve.To �nd the probabilities for on and o� errors in eq. (1.3) we have to con-sider the neurons seperated in two fractions; the on-neurons which shouldbe active in the original content pattern yk and the o�-neurons whichshould not be active. In our model the threshold of each neuron is set tothe same value depending only on the total activity of the input pattern.Therefore, it is su�cient to analyze the averaged dendritic potentials ineach of the fractions. We will use the notation d1 =< dj >j2fj:ykj=1g andda =< dj >j2fj:ykj=ag. With the assumptions of the last subsection theseaveraged quantities can be treated as random variables.Of course, the synapses { randomly generated in the storage process { are\quenched" in the retrieval so that dendritic potentials at di�erent on-sitesor o�-sites will behave di�erently. This suggests a memorymodel where thethreshold is adjusted seperately for each neuron, which has been treated in[49] and will be discussed in Sect. 1.6.3.1.3.3 Binary Storage ProcedureFor binary storage, the dendritic potential at neuron j is: dj =Pi xki �Mij,where the values of the binary Hebb matrix �M are distributed on f0; 1g.The probability that a matrix element is zero can be easily calculatedp0 := Prob[Mij = 0] = (1� pq)M : (1.9)We discuss the three cases of addressing a) to c) from Sect. 1.3.1 seperately.a) Given xk as input pattern the expectation E(d1� da) = n1(1� p0) isindependent of the value a but the variance �2(dj) is minimal for a = 0.So, optimally we choose a = 0. Then we obtain for the dendritic potentialat an on neuron d1 = n1. Thus we maximally can put � = n1 to obtaine1 = 0.The second error probability is determined from the dendritic potentialat an o� neuronea = Prob[da > �] = Prob[ Yi2fi:xki =1gMij = 1 j ykj = 0] ' (1� p0)n1 : (1.10)b) If we average over an ensemble of perfect patterns, where we adjustthe threshold individually for each input to � = n1, then the thresholdbecomes a random variable too. Now consider the �xed threshold setting� = En1 for all input patterns. For this threshold choice we simply have
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G�unther Palm , Friedrich T. Sommer xiiito insert the expectation of n1 into (1.10)ea ' (1� p0)mp: (1.11)This �xed threshold setting leads to e1(E�) > 0 because of patterns withn1 < En1 and to ea(E�) < Eea(�) because of the concavity of the functionea(�). We will use (1.11) as approximation for the retrieval error ea withthe individual threshold adjustment.c) Finally for noisy addressing we obtain for the same �xed thresholdsetting � = p0E(n1) e0a1 = (ea)p0 : (1.12)Strictly speaking, the above calculation requires independence of theentries �Mij. Although this is not the case it is shown Appendix 1 that atleast for sparse address patterns with m2=3p ! 0 the entries �Mij becomeasymptotically independent for large m.1.3.4 Incremental Storage ProcedureIn incremental storage the contribution of each pattern pair is simply sum-med up in the synaptic weights and we can devide the dendritic potentialin two parts: the signal part s, which is the partial sum coming from thestorage of the pattern pair (xk; yk) and the noise part N , the remainingpartial sum which contains no information about ykj . From equations (1.1)and (1.5) we obtaindj = N + s :=Xi xkiMij =Xi Xl xkiR(xli; ylj)= Xi Xl xkiR(xli; ylj) +Xi xkiR(xki ; ykj ):The dendritic potential and its signal part has to be regarded separatelyat an on neuron (ykj = 1) and at an o� neuron (ykj = a):s1 :=Xi xkiR(xki ; 1) ; sa :=Xi xkiR(xki ; a):We now assume that for the noise parts E(N1) = E(Na) holds and thatit is the variance of the noise �(N ), which determines the mean facilityto solve the neural detection problem. Inspired by engeneering methodswe introduce the signal-to-noise ratio as a threshold setting independentretrieval quality measurer := E(s1 � sa)=�(N ): (1.13)The motivation to do so is quite intuitive: the threshold detection problemcan be solved for a lot of neurons for the same value � if E(s1�sa) is largeand �(N ) is low.
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xiv 1. Associative Data Storage and Retrieval in Neural NetworksThe �delity requirement that ea and e1 should be small is equivalent tothe corresponding requirement that the signal-to-noise ratio r should belarge. How the retrieval errors are balanced between the two possible typesof retrieval errors is gouverned by the threshold setting. If both retrievalerror probabilities have to be below 0:5, the threshold has to satisfy Eda �� � Ed1, Eda being the expectation of the dendritic potential at an o�site.Thus we put � = Eda + #�(N )r = Ed1 � (1� #)�(N )r with # 2 [0:1].For largem the noise term N can be considered as sum of a large numberof independent random variables and the central limit theorem holds. Thenwe can estimate the error probabilities using a normal distribution and gete1=Prob[d1�� < 0]'G ��E(d1��)=�(N )�=G [�(1�#)r] (1.14)ea=Prob[da �� > 0] ' G [�#r] (1.15)with the normal or Gaussian distribution G [x] := (1=p2�) R x�1 e�x2=2dx.To obtain explicit values for the error probabilities we now have to ana-lyze the signal and noise term in (1.13) for the di�erent ensembles of inputpatterns and di�erent learning rules (Section 2.2).For input ensembles we are interested in the mean retrieval errors wherefor every input the threshold has been set in the optimal way accordingto the number of active input digits n1. We insert the signal-to-noise ratioaveraged over an input ensemble into (1.14) and consider a �xed thres-hold setting which is equal for all input patterns. As to binary storage wetake this result as an approximation for the individual threshold adjust-ment which is equivalent to an exchange of the expectations of the patternaverage and the input average in the calculation.Signal-To-Noise CalculationAgain we discern the three cases of addressing described in Sect. 1.3.1.a) For the faultless address xk as input the signal is sharply determinedas s1 � sa = n1(r4 � r3) � (m � n1)a(r2 � r1):The noise decouples into a sum of (M � 1) independent contributions cor-responding to the storage of the pattern pairs (xl; yl) with l 6= k. Forevery pair the input xk generates a sum of n1 random variables R(x; y)and of (m � n1) random variables aR(x; y) at a neuron j. The variableR(x; y) = R(xli; ylj) is the four-valued discrete random variable (1.4) withthe distribution: (1� p)(1� q); p(1� q); (1� p)q; pq.With E(R) and �2(R) denoting expectation and variance of R(x; y) asimple (but for �2(N ) tedious) calculation yieldsE(N ) = (M � 1) [n1 + (m � n1)a]E(R) (1.16)�2(N ) = (M � 1)�Q1�2(R) + Q2 Cov[RiRh]	 (1.17)
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G�unther Palm , Friedrich T. Sommer xvwhere we have used the abrevationsQ1 := n1 + (m � n1)a2Q2 := n1(n1 � 1) + 2an1(m� n1) + a2(m � n1)(m � n1 � 1)Cov[RiRh] = q(1� q) [p(r4 � r3) + (1 � p)(r2 � r1)]2The covariance term: Cov[RiRh] := Cov�R(xli; ylj)R(xlh; ylj)� measuresthe dependency between two contributions in the i-th and h-th place of thecolumn j upon the synaptic matrix.b) If we average over the ensemble of perfect input patterns we can useagain for largem the approximations n1=m ' (n1�1)=m ' (n1+1)=m ' pand(M � 1)=m 'M=m and obtainE(s1 � sa) = m [p(r4 � r3) � (1� p)a(r2 � r1)] (1.18)E(N ) = (M � 1)m�E(R)In equation (1.17) we have to insertQ1 = m �p+ (1� p)a2� ; Q2 = m2�2: (1.19)c) Finally, we consider the ensemble of noisy address patterns. In thiscaseE(s01 � s0a) = m [p(p0 + (1� p0)a)(r4 � r3)� (1� p)a(r2 � r1)] : (1.20)In the description of the noise we only have to replace in (1.18) and (1.19)p by pp0 and � by �0.Signal-to-noise Ratios for Explicit Learning RulesRegarding (1.17) and (1.18) we observe that the signal-to-noise ratio is thesame for the rules R and bR+ c, where c is an arbitrary and b is a positivenumber. Two rules that di�er only in this way, will be called essentiallyidentical. Thus we may denote any rule R asR = (0; r2; r3; r4): (1.21)The following formulae are written more concisely if we introduce insteadof r2; r3; r4 the mutually dependent parameters := r4 � r3 � r2 ; � := r2 + p ; � := r3 + q:In this notation the variance of the rule becomes�2(R) : = E(R2)� (E(R))2= �2p(1� p) + �2q(1� q) + 2p(1� p)q(1� q)
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xvi 1. Associative Data Storage and Retrieval in Neural NetworksIn the description of the input ensemble we transform from the parametersp; a to the quantities p; �, see (1.7).The signal-to-noise ratio averaged over perfect address patterns b) isthen obtained from equation (1.13) asr2 = (m=M ) [��+ (1 � �)p]2[p+ (�� p)2=(1� p)]�2(R) +mq(1 � q)�2�2 : (1.22)Averaged over noisy address patterns c) we obtain equivalentlyr02 = (m=M ) [�0�+ (1��)pp0]2[pp0 + (�0�pp0)2=(1�pp0)]�2(R) +mq(1�q)�02�2 (1.23)with the de�nition for �0 taken from (1.8).Optimal Learning RuleThe expression (1.22) invites to optimize the signal-to-noise ratio in termsof the three parameters , � and � so as to yield the optimal learning ruleR0.The parameter � appears only in �2(R) in the denominator. We �rstminimize �2(R) with � = 0 and obtainr2 = (mM ) [��+ (1��)p]2q(1�q) f[p+ (��p)2=(1� p)] [�2+2p(1�p)] +m�2�2g :(1.24)The (large) factor m in the second term of the denominator in eq. (1.24)makes this term dominating unless at least one of the other factors � or �vanishes.At a �rst sight we have to distinct two cases which di�er with respect tothe average activity � of the input patterns:� Either � stays away from zero, then it is optimal to choose � = 0(case 1).� Or �! 0 fast enough to make the second term negligible in the sumof the denominator in eq. (1.24). However, if we insert � = 0 in (1.24),again � = 0 turns out to be the optimal choice (case 2).Thus both cases leave us with � = 0 and � = 0 and yield the covariancerule as general optimal ruleR0 = (pq;�p(1� q);�q(1� p); (1� p)(1� q)): (1.25)The condition � = 0 will occur several times in the sequel, and will bereferred to as the condition of zero average input activity. In particular, forp = 0:5 it implies a = �1 and for p! 0 this implies a! 0. This condition,
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G�unther Palm , Friedrich T. Sommer xviiwhich is equivalent to a = �p=(1�p) or to p = �a=(1�a) �xes the optimalcombination between input activity and the model parameter a.For arbitrary p and a in the input patterns and for arbitrary �, theoptimal signal-to-noise ratio is evaluated by inserting R0 in eq. (1.24),r20 = (m=M ) (1 � �)2pq(1� q) [p+ (�� p)2=(1� p)] (1� p) : (1.26)Transforming back from � to a we obtainr20 = (m=M ) p(1� p)(1� a)2[p+ (1 � p)a2] q(1� q) : (1.27)Insertion of the zero average input condition � = 0 in (1.26) yields theoptimal signal-to-noise ratior20 ' mMq(1� q) : (1.28)Optimizing the signal-to-noise ratio for noisy addresses c), eq. (1.23)leads to the same optimal rule (1.25). Then the signal-to-noise ratio valuefor perfect addressing is reduced from the noise in the input patterns. Forthe optimal rule R0 with � = 0 it is given byr020 ' (1� p)p02p0 � 2pp0 + pr20: (1.29)For learning rules with � 6= 0 which have a nonzero covariance term only� = 0 can supress the m2 term in the variance of the noise. Therefore,� 6= 0 and � 6= 0 lead to vanishing r as m!1. A little algebra shows thatlearning rules with � 6= 0 and �nite  also yield a vanishing r. In conclusionall suboptimal rules need � = 0 to achieve a nonvanishing r.Hebb and Agreement RuleIf we compare the Hebb rule and the agreement rule to the optimal lear-ning rule R0 we realize, that in general both rules are suboptimal. Butnevertheless, for p = q = 0:5 the optimal rule becomes equal to the agree-ment rule: R0 = (0:25;�0:25;�0:25;0:25) and for p; q ! 0 the Hebb ruleis approximated by the optimal rule: R0 ! H.By equation (1.22) one can compute the signal-to-noise ratio for theserules, the results for � = 0 you �nd in Table 1.As expected, the Hebb rule becomes essentially identical to R0 for p; q!0. In the a = 0 model, where the parameter a is not adjusted to guarantee� = 0 we need a stricter sparseness in the address patterns: mp2 ! 0 toprovide � ! 0 fast enough to preserve the essential identity between Hand R0.By comparing the r2 values corresponding to the di�erent rules in Table1 we will derive the performance analysis of Hebb and agreement rule (seeSection 5.2 and 5.4) from the analysis of R0 carried out in this section.
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xviii 1. Associative Data Storage and Retrieval in Neural NetworksTABLE 1.1. Squared signal-to-noise ratios r2(m;M; p; q) for � = 0.Optimal rule R0 Hebb rule H Agreement rule Cr2 = mMq(1� q) m(1 � p)Mq(1� pq) 8mp(1� p)M [p(1� q) + (1 � p)q]SummaryWith incremental storage procedure the signal-to-noise ratio analysis ofone-step threshold-detection retrieval led to the following results:� If a rule R yields the signal-to-noise ratio r then any rule bR+c, withb positive yields the same signal-to-noise ratio. We call these rulesessentially identical.� For any rule R the best combination of the parameters p and a isgiven by the zero average input condition � = p+ (1� p)a = 0.� The maximal signal-to-noise ratio r0 is always achieved for the co-variance rule R0 (1.25). For increasing � the value r0 continouslydecreases and reaches r0 = 0 at � = 1.� Every rule essentially di�erent from R0 has zero asymptotic signal-to-noise ratio, if the condition � = 0 is violated.� The Hebb rule becomes essentially identical to R0 for memory taskswith q! 0 and p! 0, i.e., for sparse address and content patterns.� The agreement rule is equal to R0 for p = q = 0:5.� Storage of extensively many patterns, i.e., M=m > 0 as m !1: Inthis case R0 and H achieve asymptotically vanishing errors (r !1)for memory tasks with sparse content patterns: q ! 0 as m ! 1.The agreement rule A only achieves r = const as m!1.1.4 Information Theory of the Memory ProcessHow can the performance of an associative memory model be measured ?In our notation a given memory task speci�es the parameters: p; q;M; p0;ea; e1. From the signal-to-noise ratio analysis we can determine for ran-domly generated patterns the maximal number of pattern pairs M�, forwhich the required error bounds ea; e1 are still satis�ed. Then the �rst ideais to compare the M� to the number of neurons used in the memory model.This quotient of patterns per neuron � = M�=n is used in a lot of works
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G�unther Palm , Friedrich T. Sommer xixbut this measure disregards the parameter q used in the random generationof the content patterns as well as the whole process of addressing.In the following we use the description of elementary information theoryto �nd performance measures for the memory task and compare them withthe size of the storage medium, viz., the number of synaptic connectionsn�m.1.4.1 Mean Information Content of DataEvery combination of a memory problem and a coding algorithm will leadto a set of content patterns which exhibit in general very complicated sta-tistical correlations.For a set of randomly generated patterns S which we have used to carryout the signal-to-noise ratio analysis each digit was chosen independently.The mean information contained in one digit of a pattern is then simplygiven by the Shannon information [40] for the two alternatives with theprobabilities p and 1� pi(p) := �p log2 p� (1� p) log2(1� p)and the mean information content in the set of randomly generated contentpatterns SC is I(SC ) = Mn i(q) where q is the ratio between 1- and a-components in each content pattern. The pattern capacity compares themean information content of the content patterns with the actual size m�nof the storage medium and is de�ned asP (m;n) := maxM fI(SC)g=nm = M�i(q)=m: (1.30)Here M� equals the maximum number of stored patterns under a givenretrieval quality criterion. The de�nition (1.30) is an adequate measure ofhow much information can be put in the memory but not at all of howmuch can be extracted during the retrieval. A performance measure shouldalso consider the information loss due to the retrieval errors.1.4.2 Association CapacityThe memory can be regarded as noisy information channel consisting oftwo components (see Fig. 2): The channel input is the set of content pat-terns SC and the channel output is the set of recalled content patterns ~SCa�icted with the retrieval errors. The two components correspond to thestorage process where the sets SA and SC are transformed into the synapticmatrix and to the retrieval process where the matrix is transformed into aset of memory output patterns ~SC . The retrieval error probabilities specifythe deviation of ~SC from SC and thus the channel capacity.
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xx 1. Associative Data Storage and Retrieval in Neural Networks..........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................T ( ~SC ; SC)................................................................................................ ............................... ................................................................................................ ...............................Storage(SA, SC. . . . .. . . .. . . . .. . . .. . . . .. . . .. . . . . )mem. task Mmem. matrix................................................................................................ ............................... ................................................................................................ ...............................Retrieval,Adres-sing ~SC. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .ret. outputFIGURE 1.2. Output capacity: Information channel of storage and retrieval. (Theabbrevations \mem." for memory and \ret." for retrieval have been used.)The capacity of an information channel is de�ned as the transinformationthat is contained in the output of the channel about the channel's input.The transinformation between ~SC and SC can be writtenT ( ~SC ;SC) = I(SC )� I(SC j ~SC ); (1.31)where the conditional information I(SC j ~SC) is subtracted from the infor-mation content in SC . It describes the information necessary to restore theset of perfect content patterns SC from the set ~SC . For random generationof the data we obtainI(SC j ~SC)=nm = Mm I(yki j ~yki ) (1.32)with the contribution of one digitI(yki j ~yki )=Prob[~yki = 1]i(Prob[yki = 0 j ~yki = 1])+Prob[~yki = 0]i(Prob[yki = 1 j ~yki = 0])=[q(1� e1) + (1� q)ea] i� (1� q)eaq(1� e1) + (1� q)ea�+[qe1 + (1� q)(1� ea)] i� qe1qe1 + (1� q)(1� ea)� : (1.33)Now we de�ne the association capacity as the maximal channel capacityper synapseA(m;n) := maxM T ( ~SC ;SC)=mn = P (m;n)� M�m I(yki j ~yki ): (1.34)The capacity of one component of the channel is an upper bound for thecapacity of the whole channel: The capacity of the �rst box in Fig. 2 will becalled storage capacity (discussed in [41]). The maximal memory capacitythat can be achieved for a �xed retrieval procedure (i.e. �xing only the lastbox in Fig. 2) will be called the retrieval capacity.
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G�unther Palm , Friedrich T. Sommer xxi............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .............T ( ~SC ;SC)................................................................................................ ............................... ................................................................................................ ...............................StorageSCmem. task Mmem. matrix................................................................................................ ............................... ................................................................................................ ...............................Retrieval ~SC. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .ret. output................................................................................................................ ...............................ŜC. . . . . .. . . . .. . . . . .. . . . .. . . . . .. . . . .. . . . . .Addressing~SC ;SC)� T (ŜC ;SC)T (ŜC ;SC)FIGURE 1.3. Completion capacity: Information balance for autoassociation. (Theabbrevations \mem." for memory and \ret." for retrieval have been used.)1.4.3 Including the Addressing ProcessThe de�ned association capacity is a quality measure of the retrieved con-tent patterns but the retrieval quality depends on the properties of theinput patterns and on the addressing process. Of course, maximal associa-tion capacity is obtained for faultless addressing and with growing addres-sing faults (decreasing probability p0) the association capacity A decreasesbecause the number of patterns has to be reduced to satisfy the same re-trieval error bounds. To include judgement of addressing fault tolerance forhetero-association we have to observe the dependency A(p0).For auto-association where SA = SC we will consider the informationbalance between the information already put into the memories input andthe association capacity (see Fig. 3).This di�erence gives the amount of information really gained during theretrieval process. We de�ne the completion capacity for auto-association asthe maximal di�erence of the transinformation about SC contained in theoutput patterns and contained in the noisy input patterns ŜA,C(n) := maxŜC nT (SC j ~SC )� T (SC j ŜC )o=n2: (1.35)From (1.31) we obtainC(n) = maxŜC nI(SC j ŜC )� I(SC j ~SC)o =n2= maxp0 �M� �I(yki j ŷki ) � I(yki j ~yki )�	 =n: (1.36)In (1.36) we have to insert again the maximum number of stored patternsM� and the conditioned information to correct the retrieval errors; cf. eq.(1.33). In addition the one-digit contribution of the conditioned informationnecessary to restore the faultless address patterns SA from the noisy inputpatterns ŜA is required. It is given byI(yki j ŷki ) = (1� pp0)i�p(1� p0)1� pp0 � : (1.37)
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xxii 1. Associative Data Storage and Retrieval in Neural NetworksNote that for randomly generated content patterns, i.e., with completeindependence of all the pattern components yki , one usually reaches theoptimal transinformation rates and thus the formal capacity.1.4.4 Asymptotic Memory CapacitiesIn Sect. 3 we have also analyzed the model in the thermodynamic limit,the limit of diverging memory size. For asymptotic values for the capaci-ties in this limit we will not only examine memory tasks where the �delityrequirement remain constant. We will examine the following asymptotic�delity requirements on the retrieval which distinguish asymptotically dif-ferent ranges of the behaviour of the quantities ea and e1 with respect toq! 0 as m;n!1:� The high-�delity or hi-� requirement: e1 ! 0 and ea=q ! 0. Notethat for q ! 0 the hi-� requirement demands for both error typesthe same behaviour of the ratio between the number of erroneousand correct digits in the output: da ' d1 ! 0 with the error ratiosde�ned by da := ea=q and d1 := e1=(1� q).� The low-�delity or lo-� requirement: e1 and ea stay constant (butsmall) for n!1With one of these asymptotic retrieval quality criteria the asymptoticcapacities P , A and C are de�ned as the limits for n;m!1 and n!1,respectively.1.5 Model Performance1.5.1 Binary StorageOutput capacityIn this memory model the probability p0 = Prob( �Mij = 0) is decreased, ifthe number of stored patterns is increased. Since obviously no informationcould be drawn from a memory matrix with uniform matrix elements wewill exclude the cases p0 = 1 and p0 = 0 in the following.For faultless addressing the maximal number M� of patterns which canbe stored for a given limit on the error probabilities can be calculated by(1.9) and (1.10),M� = ln[p0]ln[1� pq] = ln�1� (ea)1=mp�ln[1� pq] : (1.38)From (1.34) we obtain for e1 = 0 and e := ea << q the associationcapacityA(m;n) ' (M�=m) fi(q) � (1 � q)elog2[e(1� q)=q]g : (1.39)
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G�unther Palm , Friedrich T. Sommer xxiii
0.000 0.008 0.016p0102030�� � �m = 512- - m = 4096| m = 1048576 0.000 0.008 0.016pinary storage in �nite memory sizes: Number of stored patterns� and output capacity A in bits/syn with the lo-� requirement d = 0:01 for p = qand n = m.0.000 0.008 0.016 0.024 0.032p0.000.010.02dexp ........................................................................................................................................................................................................................ ................................................ m = 512m = 4096FIGURE 1.5. Retrieval error ratio d = ea=k of simulations along the �-p curvesof Fig. 4 for dtheor = 0:01 . For low p values, the experimental error is evenlower than predicted because we used learning patterns with a non uctuatingactivity in the simulations. For higher p values, the theoretic values are too smallbecause in this range the e�ects of statistical dependence between di�erent matrixelements should not be neclected.In Fig. 1.4 we have plotted a): � = M�=m and b): the association capacityagainst p for q = p and the constant error ratio d = ea=p = 0:01 for three�nite memory sizes. Figure 1.5 shows simulation results for the error ratiod. For low p values, the experimental error is even lower than predictedbecause we used learning patterns with a non-uctuating activity in thesimulations. For higher p values the theoretic values are too small becausein this range the e�ects of statistical dependence between di�erent matrixelements cannot be neclected. Nonvanishing asymptotic association capa-city requires M�=m > 0 as m!1. In equation (1.38) this can be obtainedeither for p0 ! 0 which we have already excluded or for pq ! 0. In thiscase we obtain M� ' ln[p0]�pq : (1.40)
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xxiv 1. Associative Data Storage and Retrieval in Neural NetworksThe hi-� requirement leads with (1.11) to the following condition on p andq: ea=q = exp (mp ln[1� p0]� ln[q])! 0: (1.41)In the case q ! 0 the requirement (1.41) is satis�ed, if we putp = u� ln[q]m (1.42)with the positive number u > � ( ln[1� p0])�1. Inserting (1.42) in (1.40)we obtain the inequalityM� < m ln[p0] ln[1� p0]�q ln[q] (1.43)which can be put into (1.39) yielding for p0 = 0:5 and m!1 the maximalassociation capacity: A ' 0:69 bits/syn.Note that for auto-association and for hetero-association with p = q;m =n equation (1.42) implies thatp / ln[n]=n (1.44)and M� / � nln[n]�2 : (1.45)The relation (1.45) has already been obtained in [42, 43] for sparse memorypatterns with arbitrary learning rules by regarding the space of all possiblesynaptic interactions; cf. Sect. 1.6.3.For singular address patterns and arbitrary q = const, however, errorfreeretrieval is possible forM� � m, which is the combinatorical restriction fornonoverlapping singular patterns. In this case, with (1.39) an associationcapacity of A = i(q) � 1 bits/synapse is obtained.For constant p equation (1.42) demands asymptotically empty contentpatterns: q / exp (�mp=u), leading to vanishing association capacity.For singular content patterns the combinatorial restriction M� � m alsoyields vanishing association capacity.Fault Tolerance and Completion CapacityIn the case of noisy input patterns (1.12) the hi-� condition becomes :ea=q = exp (mpp0 ln[1� p0]� ln[q])! 0. Like in the preceeding subsectionwe obtain the maximal number of patterns by M 0� = p0M� where M� isthe value for faultless addressing (1.43).Thus for hetero-association the association capacity exhibits a linear de-crease with increasing addressing fault: A(p0) = p0A.
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G�unther Palm , Friedrich T. Sommer xxv
0.000 0.008 0.016p� � �m = 512- - m = 4096| m = 1048576d = 0:01 0.000 0.008 0.016p� � �m = 512- - m = 4096| m = 1048576d = 0:05FIGURE 1.6. Binary storage in �nite memory sizes: Completion capacity C inbits/syn for two lo-� values, the maximum has always been achieved for addres-sation with p0 = 0:5.For auto-association with the hi-� requirement the retrieval error termin the completion capacity (1.36) can be neglected like in the associationcapacity and we obtain for p! 0C = maxp0 �(M 0�=n)(1� pp0)i�p(1� p0)1� pp0 ��= maxp0 � ln[p0] ln[1� p0]p0(1� p0)ln[2] � = 0:17 bits/syn (1.46)for p0 = 0:5 and p0 = 0:5.In Fig. 1.6 the completion capacity is plotted against p for three �nitememory sizes and for the constant error ratios a): d = ea=p = 0:01 and b):d = 0:05. The optimum is always obtained for p0 = 0:5.1.5.2 Incremental StorageOutput capacityFor faultless addressing, zero average input and the optimal rule R0, themaximal number of stored patterns for a given signal-to-noise ratio valuer is obtained from equation (1.28)M� = m=(r2q(1� q)): (1.47)If the threshold setting provides ea=q = e1=(1 � q) =: d, the associationcapacity can be computed for small �xed values of the error ratio d from(1.34) and (1.47)A ' i(q) + q(1� q)d flog2[qd] + log2[(1� q)d]gr2q(1� q) (1.48)
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xxvi 1. Associative Data Storage and Retrieval in Neural Networks
0.0 0.1 0.2 0.3 0.4 0.5p0.00.40.81.2�� � � rule A- - rule H| rule R0 0.0 0.1 0.2 0.3 0.4 0.5podel with incremental storage, full�lled condition of zero averageinput and m;n!1 : Number of stored patterns � (left) and asymptotic outputcapacity A in bits/synsapse (right) for p = q with the lo-� requirement d = 0:01.The optimal rule R0 is approached by the agreement rule A for p = 0:5 and bythe Hebb rule for p ! 0. For p ! 0, the lo-� output capacity values of optimaland Hebb rule reach but do not exceed the hi-�value of A = 0:72 bits/synapse(This can only be observed, if the p scale is double logarithmic; see Fig. 5 in[Pa91]).With substitution of r = G�1 [qd] + G�1 [(1� q)d] in (1.48) we obtain theassociation capacity for the rule R0 for a constant d error ratio, the lo-�requirement. (G�1 [x] is the inverse Gaussian distribution.) In Fig. 1.7 wedisplay the association capacity values for optimal, Hebb and agreementrule, the latter two obtained by comparison of the signal-to-noise ratios inTable 1, Sect. 1.3.4.The hi-� requirement can only be obtained for r ! 1 as m ! 1in (1.47) which is possible either for M�=m ! 0, leading to vanishingassociation capacity or for q ! 0, the case of sparse content patterns,which we focus on in the following.We now choose a diverging signal-to-noise ratio byr =p�2 ln[q]=#: (1.49)The threshold has to be set asymmetrically: # ! 1 because for sparsepatterns ea=e1 ! 0 is demanded. (This implies q = exp[� (#r)2 =2], yieldingwith Appendix 2: ea=q ' (�r2=2)�1=2 ! 0. If the threshold # approaches1 slowly enough that still (1�#)r!1 holds, then also e1 ! 0 is true andthe hi-� requirement is full�lled.)With vanishing e=q equation (1.48) simpli�es asymptotically toA � P + 2elog2[e]r2 ' PAgain the information loss due to retrieval errors can be neclected due tothe high �delity requirement.
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G�unther Palm , Friedrich T. Sommer xxviiInserting (1.49) in (1.47) we obtain for zero average input and the optimalrule R0 M� = m= (�2q(1� q) ln[q]) (1.50)which again can also be found with the Gardner method [42, 43]; cf.Sect. 1.6.3.With (1.50) and (1.30) we obtain as asymptotic association capacity withthe hi-� requirement: A = 0:72 bits/syn.In contrast to the model with binary storage { where only for sparsecontent and address patterns a positive association capacity has been ob-tained { with incremental storage an association capacity A = 0:72 bits/synis achieved even for memory tasks with nonsparse address patterns. Howe-ver, for f0; 1g-neurons we are again restricted to sparse address patternsbecause for nonsparse address patterns the zero average input conditioncannot be satis�ed.With singular address or content patterns which are no interesting casesfor associative memory as we will discuss in Sect.1.6.1, incremental andbinary storage form the same memory matrix and achieve exactly the sameperformance; see last part of Sect. 1.5.1.Fault tolerance and Completion CapacityFor hetero-association with noisy addressing we obtain the association ca-pacity for zero average input and R0 by using equation (1.29) (rememberthat r2 / m=M ) A(p0) = (1� p)p02p0 � 2pp0 + pA: (1.51)For p = 0:5 this implies A(p0) = p02A and for p ! 0 like in the binarycase A(p0) = p0A.For auto-association with the hi-� requirement we obtain in a way similarto (1.46) C(n) = maxp0 �#2p0(1�p0)log2[p(1�p0)]2 ln[p] �' maxp0 �#2p0(1�p0)2ln[2] � = 0:18 bits/synAgain the maximum is reached for p0 = 0:5 and #! 1.A similar optimization in p0 can be carried out for �xed values of p andlo-� requirement; see Fig. 1.8. In this case the optimum is reached for p0larger than 0:5.
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0.0 0.1 0.2 0.3 0.4 0.5p� � � rule A- - rule H| rule R0 0.0 0.2 0.4p0.50.60.70.8p0 .........................................................................................................................................................................................................................................................................................FIGURE 1.8. Incremental storage for n ! 1: Completion capacity in bits/synwith the lo-� requirement d = 0:01. The optimal p0 in the addressing has beendetermined numerically (right diagram).nonsparse sparse singularcontent content contentnonsparse - incr. R0 -addresssparse - incr. R0;H -address bin. Hsingular incr. R0;H - -address bin. HTABLE 1.2. Models which yield A > 0 for the hi-� requirement in di�erentmemory tasks. (incr.=incremental storage, bin. = binary storage. For instance:incr.R0,H denotes the incremental storage model either with optimal rule or withHebb rule.)1.6 Discussion1.6.1 Hetero-associationIn applications of associative memory the coding of address and contentpatterns plays an important role. In Sect. 1.1 we distinguished three types ofpattern leading to the memory tasks de�ned in Sect. 1.4; singular patternswith only a single 1-component, sparse patterns with a low ratio betweenthe numbers of 1- and a-components and nonsparse patterns. To get ageneral idea Table 2 shows those memory models which achieve associationcapacity values A > 0 under the hi-� requirement. Note that only Hebband the optimal learning rule in memory tasks with sparse or singularpatterns yield nonvanishing hi-� association capacity. In the following weshall consider the di�erent types of content patterns subsequently.
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G�unther Palm , Friedrich T. Sommer xxixbinary incrementalH H R0nonsparse - - A = 0:72address - - p02sparse A = 0:69 A = 0:72 A = 0:72address p0 p0 p0TABLE 1.3. Hi-� association capacity values of the di�erent models for sparsecontent patterns. As a measure of addressing fault tolerance (cf. Sect. 1.3) in thesecond line of each cell the reduction factor for faulty addressing is displayed.For instance, with sparse address and content patterns the Hebb rule in theincremental storage yields A = 0:36 bits/syn, if in the addressing p0 = 0:5 ischosen.Nonsparse Content PatternsOnly in combination with singular address patterns do nonsparse patternsachieve high association capacity. In this case, quali�ed in Sect. 1.4 as thelook-up-table task, all rules achieve A = 1. The associative memory workslike a RAM device where each of the m content patterns is written into onerow of the memory matrix �M and, therefore, trivially A = i(q). However,this is no interesting case for associative storage because the storage is notdistributed and in the recall no fault tolerance can be obtained: A(p0) = 0for p0 < 1.Sparse Content PatternsCombined with sparse or nonsparse address patterns sparse content pat-terns represent the most important memory task for neural memory mo-dels with Hebb or optimal learning rule where high capacity together withassociative recall properties is obtained. For optimal association capacitymany patterns in the set of sparse learning patterns will overlap. Therefore,in the learning process several pattern pairs a�ect the same synapse anddistributed storage takes place. In Table 3 the hi-� association capacityvalues can be compared. For sparse address patterns, Hebb and optimalrule achieve exactly the same performance because with the zero averageinput condition both rules are essentially identical. Even the binary Hebbrule shows almost the same performance. At a �rst sight it is striking thatbinary storage, using only one bit synapses, yields almost the same perfor-mance as incremental storage, using synapses that can take many discretevalues. This fact becomes understandable, if we consider the mean contri-butions of all patterns at one synapse by incremental and by binary storage:EM = 0:69 for incremental compared with E �M = 0:5 for binary storage.In both cases the sparseness requirement prevents the matrix elements fromextensive growth; also in incremental storage the vast majority of synapsestake only the values 0, 1, and 2.
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xxx 1. Associative Data Storage and Retrieval in Neural NetworksFor nonsparse address patterns only the optimal setup, namely, the ruleR0 in the incremental storage, achieves nonvanishing association capacity.This case is of less importance for applications since implementation ismuch more di�cult (higher computation e�ort for a 6= 0 and the determi-nation of the value of a requires the parameter p of the patterns).Relaxing the quality criterion does not enhance the association capacityvalue in the sparse limit. The lo-� association capacity values, plotted inFig. 4 and Fig. 7 do not exceed the hi-� values of Table 3. With the agree-ment rule �nite lo-� association capacity values can be achieved (see Fig.7) whereas the hi-� association capacity always vanishes.Singular Content PatternsThe neural pattern classi�er which responds to a nonsingular input patternwith a single active neuron is often called \grandmother model" or percep-tron. Here the information contained in the content patterns is asympto-tically vanishing compared to the size of the network: A = 0. Again nodistributed storage takes place.1.6.2 Auto-AssociationIf content and address pattern are identical in order to accomplish patterncompletion in the retrieval, we have only to regard the cases of sparse andnonsparse learning patterns.Asymptotic ResultsThe amount of information that can be really extracted by pattern comple-tion with high quality is given by the asymptotic hi-� completion capacity.It always vanishes in case of nonsparse patterns. For one-step retrieval withsparse patterns we have determined C = 0:18 and C = 0:17 bits/syn forthe Hebb rule in incremental and binary storage respectively (Sects. 1.5.1and 1.5.2).Using a practically unrealistic �xed-point read-out scheme7 and the Hebbrule we have found completion capacity values of C = 0:36 bits/syn forincremental and C = 0:35 bits/syn for binary storage [30, 23]. Thus onewould expect the performance of one-step retrieval to be improved by �xed-point retrieval, i.e., starting from a single address pattern and iterating theretrieval process until the �xed-point is reached. Asymptotically, however,�xed-point retrieval does not improve the one-step capacity results [44, 45,46]. It is a consequence of the full�lled hi-� condition that already after the�rst step we get asymptotically vanishing errors for diverging system size.7Fixed points are patterns which remain unchanged during a retrieval stepi.e., input and output pattern are identical.
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0 1 2 3 4 5iteration steps0.000.050.10C ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ...................... ...................... ...................... ...................... ...................... ...................... ...................... ...................... ...................... ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ...................... ....................................................................................... M = 40000M = 50000M = 60000M = 70000M = 80000FIGURE 1.9. Completion capacity C in bits/syn for iterative retrieval for addres-sation with p0 = 0:5 which has been achieved in simulations in binary storagewith 4096 neurons. Depending on the number of stored patterns M an improve-ment up to twenty percent (for M = 60000) can be obtained after the �rst stepthrough iteration.Finite-Size SystemsAlthough Fig. 1.6 illustrates that the asymptotic capacity bounds are onlyreached for astronomic memory sizes, even for realistic memory sizes sparsepatterns yield better performance than nonsparse patterns. Simulationsand analysis have revealed (again cf. [44, 45]) that iterative retrieval me-thods with an appropriate threshold setting scheme (saying how the thres-hold has to be aligned during the sequence of retrieval steps), yield superiorexploitation of the auto-association storage matrix as compared to one-stepretrieval; see Fig. 1.9. For �nite systems, �xed-point retrieval does even im-prove the performance and capacity values above the asymptotic value; e.g.for n = 4096 about C = 0:19 bits/syn can be obtained.For a certain application and a given �nite memory size, however, wecannot reduce the pattern activity ad libitum by modifying the coding al-gorithm. Then we may sometimes be faced with p >> ln[n]=n; cf. (1.42).In this case, binary Hebbian storage is ine�ective { see Fig. 6 { and incre-mental storage does not work either.1.6.3 Relations to other approachesHetero-associationThe zero average input condition for memory schemes with non-optimallocal synaptic rules was �rst made explicit by Palm [47] but appeared im-plicitely in some closely related papers. Horner [48] has used it to de�ne theneural o�-value a in his model and Nadal and Tolouse [24] have exploited
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xxxii 1. Associative Data Storage and Retrieval in Neural Networksit (through their condition of 'safely sparse' coding) as a justi�cation fortheir approximations.The optimization of the signal-to-noise ratio r carried out by Willshawand Dayan [37] and independently by Palm [47] has already been sugge-sted { though not carried out { by Hop�eld [25]. Also Amit et al [8] haveproposed the covariance rule R0.The signal-to-noise ratio is a measure of how well threshold detection canbe performed in principle, independently of a certain strategy of thresholdadjustment. We have examined the model where the threshold assumes thesame value � for all neurons during one retrieval step and optimized theresponse behavior depending on the individual input activity. So we couldlump together the on- and o�- fractions of output neurons and calculatethe average signal-to-noise ratio.In a recent work Willshaw and Dayan [49] have carried out a signal-to-noise analysis using quite similar methods for a di�erent model. In theirmodel the threshold setting �j has been chosen individually for each neuronfor the average total activity of input patterns. Thus the signal-to-noiseratio at a single neuron has been optimized for averaged input activity.Due to this di�erence the results only agree for zero average input activityand in the thermodynamic limit; for the same optimal rule the same signal-to-noise ratio is obtained. In general, their model is not invariant under theaddition of an arbitrary constant in the learning rule because for E(R) 6= 0activity uctuations in an individual input pattern are not compensatedby threshold control as in our model.Most of the results for hetero-association discussed here can be foundin the literature in Peretto [50], Nadal and Toulouse [24], Willshaw andDayan [37] and Palm [47, 51]). Some of our results are numerically identi-cal to those of Nadal and Toulouse who employ di�erent arguments (e.g.,approximation of the distribution of the noise term (1.13) by a Poissondistribution). In our framework one could also de�ne a \no �delity require-ment", namely ea and e1 ! 0:5, which would correspond to the \error-fullregime" of Nadal and Toulouse. This leads to the same numerical resultA = 0:46, which, however, is not very interesting from the engineeringpoint of view since it is worse then what can be achieved with high �de-lity. The result for binary storage stems from Willshaw et al [4] for theHebb rule, and to Hop�eld [25] for the agreement rule. A new aspect is theinformation-theoretical view on the tradeo� between association capacityand fault tolerance.Auto-associationAuto-association has been treated extensively in the literature; see for ex-ample [8, 25, 43, 26, 29]. In two points our treatment di�ers from most ofthe papers on auto-association:
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G�unther Palm , Friedrich T. Sommer xxxiii� Usually models with �xed-point retrieval (and only with incrementalstorage) have been considered.� As the appropriate performance measure for pattern completion weevaluate and compare the completion capacity which takes into ac-count the entire information balance during the retrieval.With one exception [48, 52] other authors regard (in our terms) the pat-tern capacity, i.e., the retrieval starts from the perfect pattern as address8.Hence, to compare the existing �xed-point results with our one-step retrie-val for auto-association we should take the association capacity or patterncapacity results, calculated in Sect. 1.5.2 for hetero-association, in the casep = q.For nonsparse patterns with p = 0:5, �xed-point retrieval with the lo-�requirement stays below one-step retrieval: for the same �delity of d = 0:002the one-step result for the agreement rule (Fig. 4) is higher than the Hop-�eld bound for the �xed-point retrieval in [10, p.296]. Here one-step retrie-val behaves more smoothly with respect to increasing memory load becausethe �nite retrieval errors after the �rst step are not further increased byiterated retrieval. If the lo-� �delity requirement is succesively weakened, asmooth increase of the one-step association capacity can be observed andno sharp overload breakdown of the capacity (the Hop�eld catastrophy)takes place as it is known for �xed-point retrieval at the Hop�eld bound�c [25, 8, 29].The pattern capacity for the binary agreement rule has been estimatedby a comparison of the signal-to-noise ratios for the binary and nonbinarymatrix in [25] and has been exactly determined in [26] as Ab = (2=�)A. Fornonsparse learning patterns binary storage is really worse than incrementalstorage.Again, as for hetero-association, only for sparse patterns nonzero valuesfor the asymptotic hi-� capacities can be achieved. For one-step retrievalwith a = 0 we have found a hi-� pattern capacity of P = 0:72 bits/syn.For �xed-point retrieval, it has been possible to apply the statistical me-chanics method to sparse memory patterns; cf. for instance [53, 27]. In [27]just the same value P = 0:72 bits/syn has been obtained. By a combi-natorial calculation we have also obtained this pattern capacity value for�xed-point retrieval [30]. One-step and �xed-point retrieval yield the samepattern capacity because for sparse patterns the hi-� condition is satis�ed.It guarantees that almost all learned patterns are preserved in the �rstretrieval step and hence are �xed-points.8To obtain the pattern capacity, it is su�cient to study the properties ofthe �xed-points as a static problem. Evaluating the completion capacity one hasto study how the system state evolves from a noisy input pattern in order todetermine the properties of the output pattern with a given address. This is adynamic problem which is in fact very di�cult.



www.manaraa.com

xxxiv 1. Associative Data Storage and Retrieval in Neural NetworksQuite a di�erent way to analyze the storage of sparse and nonsparsepatterns through statistical mechanics has been developed by Gardner [42,43]. In the space of synaptic interactions, she has determined the subspacewhere every memory pattern is a stable �xed point. For sparse patternsthis method yields the same pattern capacity value.1.6.4 SummaryThe main concerns of this paper can be summarized as follows:� The statistical analysis of a simple feed-forward model with one-stepretrieval provides the most elementary treatment of the phenomenaof distributed memory and associative storage in neural architecture.� The asymptotic analytical results are consistent with the literature.For auto-association, most of the cited works consider �xed-point re-trieval which allows us to compare one-step with �xed-point retrieval.� Our information-theoretical approach introduces the capacity de�ni-tions as the appropiate performance measures evaluating for the dif-ferent memory tasks the information per synapse which can be storedand recalled. Note that nonvanishing capacity values imply that theinformation content is proportional to the number of synapses in themodel.� For local learning rules sparse content patterns turns out to be thebest possible case, cf. [54]. High capacity values and distributed sto-rage with fault tolerant retrieval are provided by the Hebb rule andf0; 1g neurons. Here the number of stored patterns is much higherthan the number of neurons constituting the network. The binaryHebb rule { much easier to implement { yields almost the same per-formance as the incremental Hebb rule. For auto-association one-stepretrieval achieves the same asymptotic capacity values as �xed-pointretrieval (for the �nite-size model �xed-point retrieval yields highercapacity values). The hi-� condition can always be full�lled by sparsecontent patterns and only by these.Acknowledgement. We are indepted to F. Schwenker for Fig. 1.9 and formany helpful discussions. We thank J.L. van Hemmen for a critical readingof the manuscript. This work was partially supported by the Bundesmini-sterium f�ur Forschung und Technologie.Appendix 1In this section we show for the Hebb rule in binary storage the independenceof two di�erent matrix elements. This is required in Sect. 3.2.
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G�unther Palm , Friedrich T. Sommer xxxvProposition 1 For the binary storage matrix M we have as n!1Prob[M1j=1 and M2j=1]Prob[M1j=1]Prob[M2j=1] ! 1 and Prob[Mj1=1 and Mj2=1]Prob[Mj1=1]Prob[Mj2=1] ! 1provided p and q! 0 and x :=Mpq stays away from zero for n!1.Proof. Prob[Mij = 1] = 1� (1� pq)M :Prob[M1j=1 andM2j=1] = Prob[(9k : xk1=xk2=1 and ykj =1)or(9l;m : xl1; xl2=0; xm1 =0; xm2 ; ylj=1; ymj =1)]= 1� (p(E1) + p(E2) � p(E1 \E2));whereE1 = [8k : not (xk1=xk2=1 and ykj =1) and not (xk1=1; xk2=0; ykj =1)]andE2 = [8k : not (xk1=xk2=1 and ykj = 1) and not (xk1=0; xk2=1; ykj =1)]:Thus Prob(E1) = Prob(E2) = (1� pq)M and Prob(E1 \E2) = (1� q(2p�p2))M :Therefore we obtainProb[M1j = 1 and M2j = 1]� Prob[M1j = 1] � Prob[M2j = 1]= (1�2qp+qp2)M � (1�pq)2M = (1�2qp+qp2)M � (1�2pq+p2q2)M= e�M(2pq�p2q) � e�M(2pq�p2q2) = e�2pqM (eMp2q � eMp2q2 ):Thus we �ndProb[M1j = 1 and M2j = 1]� Prob[M1j = 1] � Prob[M2j = 1]Prob[M1j = 1] �Prob[M2j = 1]= e�2x(epx � eqpx)(1� e�x)2 ! 0since px! 0 and pqx! 0.This proposition shows the asymptotic pairwise independence of the ent-riesMij in the memory matrixM, since entries which are not on the samerow or column of the matrix, are independent anyway.In order to show complete independence one would have to considerarbitrary sets of entries Mij. In this strict sense the entries cannot beindependent asymptotically. For example, if one considers all entries in onecolumn of the matrix, then Prob[Mij = 0 for all i] = (1 � q)M � e�Mqwhich is with (1.9)in general not equal to pm0 = (1� pq)Mm � e�Mmpq .
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xxxvi 1. Associative Data Storage and Retrieval in Neural NetworksThus independence can at the best be shown for sets of entries of thematrixM up to a limited cardinality L(n). The worst case, which is alsoimportant for our calculations of storage capacity, is again when all entriesare in the same column (or row) of the matrix. This case is treated in thenext proposition, which gives only a rough estimate.Proposition 2Prob[Mij = 1 for i = 1; : : : ; l]Prob[Mij = 1]l ! 1 for n!1as long as pl2 ! 0 and x = Mpq stays away from zero for n!1.Proof.Prob[Mij = 1] � Prob[Mlj = 1jMij = 1 for i = 1; : : : ; l� 1]� Prob[Mlj=1j there are at least l � 1 pairs (xk; yk) with ykj =1]= 1� (1� p)l�1(1� pq)M�l+1:Therefore0 � log p[Mij=1 for i=1; : : : ; l]p[Mij=1]l � l�1Xi=0 log 1�(1�p)i(1�pq)M�i1� (1�pq)M= l�1Xi=0 log 1� ( 1�p1�pq )ip01� p0 � l�1Xi=0 log 1� (1� ip)p01� p0 ;since ( 1� p1� pq )i � (1� p)i � 1� ip;� l�1Xi=0 ip p01� p0 ;since log(1 + x) � x;� p � p01� p0 � l22 ! 0 for p � l2 ! 0;and if p0 = (1� pq)M � e�Mpq = e�x 6! 1:For (1.10) we need the independency of l = mp matrix elements, thus forsparse address patterns with m2=3p ! 0 the requirement of Prop. 2 isfull�lled and the independence can be assumed.Appendix 2The following estimation of the Gauss integral G(t) is used in Sect. 5.2.
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G�unther Palm , Friedrich T. Sommer xxxviiProposition 3(2�t2)�1=2e�t2=2(1 � t2) � G(�t) = 1�G(t) � (2�t2)�1=2e�t2=2Proof. Since x2 = t2 + (x� t)2 + 2t(x� t), we haveZ 1t e�x2=2dx = e�t2=2 Z 10 e�x2=2e�xtdxFrom this and with e�x2=2 � 1 we obtain the second inequality directlysince R10 e�xtdx = 1=t and the �rst one after partial integrationbecause R10 xe�xtdx = 1=t.
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